4 problems, 85 points
165 minutes
2 sheet (4 pages) of notes allowed.

Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate sheet.
Problem 1. (25 points) Suppose a binary code of blocklength n with $M = 2^{nR}$ codewords is constructed by random coding, by choosing each letter of each codeword independently by a fair coin flip. Let $X(1), \ldots, X(M)$ denote the codewords by this procedure.

(a) (4 pts) For $m \neq m'$, what is $\Pr(X(m) = X(m'))$?

(b) (5 pts) Let $G_i = 1$ if $X(i)$ is different from $X(1), \ldots, X(i-1)$, and $G_i = 0$ otherwise. Find $\Pr(G_i = 1 \mid G_1 = \cdots = G_{i-1} = 1)$. [Hint: the event $G_1 = \cdots = G_{i-1} = 1$ is the same as $X(1), \ldots, X(i-1)$ being distinct.]

(c) (4 pts) Find $\Pr(G_1 = \cdots = G_M = 1)$.

(d) (4 pts) Let q denote the probability that all codewords are distinct (i.e., for every $m \neq m'$, $X(m) \neq X(m')$.) Using (c) and the identity $1 - x \leq \exp(-x)$, show that $q \leq \exp(- \sum_{i=1}^{M} (i-1)/2^n)$.

(e) (4 pts) Show that for $R > 1/2$, $q \to 0$ as n gets large, i.e., for rates larger than $1/2$ and large blocklength a random code will have repeated codewords with high probability.

(f) (4 pts) Suppose now that $X(1), \ldots, X(M)$ are chosen independently (but not necessarily according to the "i.i.d letter"s procedure above. Show that the value of q found above is an upper bound to the probability that $X(1), \ldots, X(M)$ are all distinct. [Hint: show that $\Pr(X(m) = X(m'))$ is lower bounded by the value you found in (a).]
Consider random variables X_1, X_2, Y_1, Y_2.

(a) (4 pts) Show that

$$I(X_1, X_2; Y_1, Y_2) \geq I(X_1; Y_1) + I(X_2; Y_2)$$

when X_1 and X_2 are independent.

Consider now two discrete memoryless channels whose outputs Y_1 and Y_2 depend on their inputs x_1 and x_2 as

$$Y_1 = f_1(x_1, Z_1), \quad Y_2 = f_2(x_2, Z_2)$$

where f_1 and f_2 are deterministic functions, and, Z_1 and Z_2 are random variables (perhaps dependent) chosen independently of the inputs (x_1, x_2).

A communication system has access to both channels, i.e., the effective channel between the transmitter and the receiver takes as input the pair (x_1, x_2), and outputs the pair (Y_1, Y_2).

(b) (3 pts) Show that the capacity of the effective channel is larger than the sum of the capacities of the individual channels.

(c) (5 pts) Suppose the inputs x_1, x_2 are binary. Further suppose $Z_1 = Z_2$ and is equally likely to be 0 or 1. Suppose

$$f_1(x_1, z_1) = x_1 + z_1 \mod 2, \quad f_2(x_2, z_2) = x_2 + z_2 \mod 2.$$

What are the capacities of the individual channels? What is the capacity of the effective channel?
Problem 3. (22 points) Consider a linear code defined over the ternary alphabet \(\mathbb{F}_3 = \{0, 1, 2\} \) (equipped with modulo-3 addition and multiplication) as follows: \(\mathbf{x} \) is a codeword if and only if \(H\mathbf{x} = \mathbf{0} \) where

\[
H = \begin{bmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 2 & 2
\end{bmatrix}
\]

(and all operations are done in modulo-3 arithmetic).

(a) (4 pts) What is the blocklength, the number of codewords, and the rate of this code?

A codeword \(\mathbf{x} \) is sent over a channel. It is known that during the transmission either all letters are received correctly, or, one of the letters is changed (to some other element of \(\mathbb{F}_3 \)).

(b) (5 pts) Show that the receiver can detect if a change has happened and correct it if so.

(c) (4 pts) Suppose we are allowed to augment the matrix \(H \) by appending to it a fifth column. How will this change the rate of the code?

(d) (4 pts) Which of the following candidate columns (if any) can be appended to \(H \) and still preserve the property in (b): \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \), \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \), \(\begin{bmatrix} 2 \\ 1 \end{bmatrix} \)?

(e) (5 pts) Suppose it is known that during the transmission all letters are received correctly, or one of the letters is changed in the following restricted way: 0 can be replaced by 1 (but not by 2); 1 can be replaced by 2 (not by 0); 2 can be replaced by 0 (not by 1). Redo part (d) for this channel.
Problem 4. (26 points) Consider a multiple access channel with inputs $X_1 \in \{0,1\}$, $X_2 \in \{0,1\}$ and output $Y \in \{0,1,2\}$ given by $Y = X_1 + X_2$. Note that the channel is noiseless, $Y = 0$ when $(X_1, X_2) = (0,0)$, $Y = 2$ when $(X_1, X_2) = (1,1)$, and $Y = 1$ otherwise.

(a) (5 pts) What is the capacity region of this channel?

Consider now this multiple access channel with feedback: both the encoders get to see the value the past channel outputs Y_1, \ldots, Y_{i-1} before transmitting X_{1i} and X_{2i}.

Consider the following transmission scheme. Messages $m_1 = (u_{11}, \ldots, u_{1k})$ and $m_2 = (u_{21}, \ldots, u_{2k})$ are k-bit sequences, where $u_{11}, \ldots, u_{1k}, u_{21}, \ldots, u_{2k}$’s are i.i.d and equally likely to be 0 and 1. The transmission takes place in two phases:

Phase 1 (of duration k): the encoders send the messages uncoded, i.e., $X_{1i} = u_{1i}$ and $X_{2i} = u_{2i}$, $i = 1, \ldots, k$. Let $T = \sum_{i=1}^{k} 1\{Y_i = 1\}$ be the number of times $Y_i = 1$, and let i_1, \ldots, i_T be the values of i for which $Y_i = 1$ in the first phase. Note that T, and i_1, \ldots, i_T are known to both the encoders and also to the receiver.

Phase 2: You will design phase 2 below.

(b) (4 pts) $(u_{1i_1}, \ldots, u_{1i_T})$ is a T-bit long sequence. Let $Q \in \{0, \ldots, 2^T - 1\}$ denote the T bit integer with this binary representation. At the end of phase 1, who (among the encoders and the receiver) knows the value of Q?

(c) (5 pts) Let $S = T \log_3 2$ so that $2^T \leq 3^{\lceil S \rceil}$. Let $(v_1, \ldots, v_{\lceil S \rceil})$ be the ternary representation of Q (i.e., Q is radix 3). Show how to design phase 2 of duration $\lceil S \rceil$ so that the receiver, during this phase, receives $v_1, \ldots, v_{\lceil S \rceil}$.

(d) (4 pts) Let $N = \lceil k + S \rceil$ denote the total transmission time. Find $E[k + S]$.

(e) (4 pts) What value does $k/E[N]$ approach as k gets large?

(f) (4 pts) Use the law of large numbers to find $\lim_{k \to \infty} T/k$. Using $\log_3 2 < 2/3$, show that $R = \lim_{k \to \infty} k/N > 3/4$.
