Problem 1: Divergence and L_1

Suppose p and q are two probability mass functions on a finite set U. (I.e., for all $u \in U$, $p(u) \geq 0$ and $\sum_{u \in U} p(u) = 1$; similarly for q.)

(a) Show that the L_1 distance $\|p - q\|_1 := \sum_{u \in U} |p(u) - q(u)|$ between p and q satisfies

$$\|p - q\|_1 = 2 \max_{S \subseteq U} p(S) - q(S)$$

with $p(S) = \sum_{u \in S} p(u)$ (and similarly for q), and the maximum is taken over all subsets S of U.

For α and β in $[0, 1]$, define the function $d_2(\alpha \parallel \beta) := \alpha \log \frac{\alpha}{\beta} + (1 - \alpha) \log \frac{1 - \alpha}{1 - \beta}$. Note that $d_2(\alpha \parallel \beta)$ is the divergence of the distribution $(\alpha, 1 - \alpha)$ from the distribution $(\beta, 1 - \beta)$.

(b) Show that the first and second derivatives of d_2 with respect to its first argument α satisfy $d_2'(\beta \parallel \beta) = 0$ and $d_2''(\alpha \parallel \beta) = \log e \geq 4 \log e$.

(c) By Taylor’s theorem conclude that

$$d_2(\alpha \parallel \beta) \geq 2(\log e)(\alpha - \beta)^2.$$

(d) Show that for any $S \subseteq U$

$$D(p\|q) \geq d_2(p(S)\|q(S))$$

[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that

$$D(p\|q) \geq \frac{\log e}{2} \|p - q\|_1^2.$$

(f) Show, by example, that $D(p\|q)$ can be $+\infty$ even when $\|p - q\|_1$ is arbitrarily small. [Hint: considering $U = \{0, 1\}$ is sufficient.] Consequently, there is no generally valid inequality that upper bounds $D(p\|q)$ in terms of $\|p - q\|_1$.

1
Solution
(a) For any set \(S \), we have
\[
p(S) - q(S) = \sum_{u \in S} p(u) - q(u) \leq \sum_{u \in S} |p(u) - q(u)|.
\] (1)

Similarly for the compliment set of \(S \), we also have
\[
q(S^c) - p(S^c) = \sum_{u \in S^c} q(u) - p(u) \leq \sum_{u \in S^c} |p(u) - q(u)|.
\] (2)

Note that \(p(S) + p(S^c) = q(S) + q(S^c) = 1 \). Thus \(q(S^c) - p(S^c) = p(S) - q(S) \). Therefore, we have
\[
2(p(S) - q(S)) \leq \sum_{u \in S} |p(u) - q(u)| + \sum_{u \in S^c} |p(u) - q(u)| = \sum_{u \in S} |p(u) - q(u)| = \|p - q\|_1
\] (3)

For the choice \(S = \{ u : p(u) > q(u) \} \), we have
\[
p(S) - q(S) = \sum_{u \in S} p(u) - q(u) = \sum_{u \in S} |p(u) - q(u)|
\] (4)

\[
q(S^c) - p(S^c) = \sum_{u \in S^c} q(u) - p(u) = \sum_{u \in S^c} |p(u) - q(u)|
\] (5)

So, for this \(S \), we have \(2(p(S) - q(S)) = \|p - q\|_1 \).

(b) Since \(d_2(\alpha||\beta) = \alpha \log \frac{\alpha}{\beta} + (1 - \alpha) \log \frac{1 - \alpha}{1 - \beta} \),
\[
d_2'(\alpha||\beta) = \frac{\partial d_2(\alpha||\beta)}{\partial \alpha} = \log \frac{\alpha}{\beta} + \log e - \log \frac{1 - \alpha}{1 - \beta} - \log e = \log \frac{\alpha(1 - \beta)}{\beta(1 - \alpha)}
\] (6)

Therefore, we have \(d_2'(\beta||\beta) = 0 \).

\[
d_2''(\alpha||\beta) = \frac{\log e}{\alpha(1 - \alpha)} \geq 4 \log e
\] (7)

where equality achieves when \(\alpha = 1/2 \).

(c) Taylor theorem says that for any \(f \) for which \(f'' \) is continuous
\[
f(\alpha) = f(\beta) + (\alpha - \beta)f'(\beta) + (1/2)(\alpha - \beta)^2 f''(x_i)
\] (8)

where \(x_i \) is a value between \(\alpha \) and \(\beta \). With \(f(\alpha) = d_2(\alpha||\beta) \), we thus have
\[
d_2(\alpha||\beta) = 0 + 0 + (1/2)(\alpha - \beta)^2 f''(x_i) \geq 2 \log e (\alpha - \beta)^2
\] (9)

(d) Consider a deterministic channel with binary output
\[
V = \begin{cases} 1, & \text{if } V \in S \\ 0, & \text{if } V \notin S \end{cases}
\] (10)

Thus,
\[
d_2(p(S)||q(S)) = p(S) \log \frac{p(S)}{q(S)} + (1 - p(S)) \log \frac{1 - p(S)}{1 - q(S)}
\] (11)

\[
= p(V = 1) \log \frac{p(V = 1)}{q(V = 1)} + p(V = 0) \log \frac{p(V = 0)}{q(V = 0)}
\] (12)

\[
= D(p_V||q_V)
\] (13)
By data processing theorem for divergence, $D(p\|q) \geq D(p_v\|q_v)$

(e) Combine (a),(c) and (d) and choosing $S = \{u : p(u) > q(u)\}$, we have $\forall S$

\[
D(p\|q) \geq d_2(p(S)\|q(S)) \geq 2(\log e)(p(S) - q(S))^2 = \frac{\log e}{2} \|p - q\|_1^2
\]

(14)

(f) Let p be Bernoulli distribution with probability ϵ to be 1 and q is 0 with probability 1. Then

\[
D(p\|q) = p(1)\log \frac{p(1)}{q(1)} + p(0)\log \frac{p(0)}{q(0)} = +\infty
\]

But $\|p - q\|_1 = 2\epsilon$.

Problem 2: Other Divergences

Suppose f is a convex function defined on $(0, \infty)$ with $f(1) = 0$. Define the f-divergence of a distribution p from a distribution q as

\[
D_f(p\|q) := \sum_u q(u)f(p(u)/q(u)).
\]

In the sum above we take $f(0) := \lim_{t\to0} f(t)$, $0f(0/0) := 0$, and $0f(a/0) := \lim_{t\to0} tf(a/t) = a\lim_{t\to0} t f(1/t)$.

(a) Show that for any non-negative a_1, a_2, b_1, b_2 and with $A = a_1 + a_2$, $B = b_1 + b_2$,

\[
b_1 f(a_1/b_1) + b_2 f(a_2/b_2) \geq B f(A/B);
\]

and that in general, for any non-negative a_1, \ldots, a_k, b_1, \ldots, b_k, and $A = \sum_i a_i$, $B = \sum_i b_i$, we have

\[
\sum_i b_i f(a_i/b_i) \geq B f(A/B).
\]

[Hint: since f is convex, for any $\lambda \in [0,1]$ and any $x_1, x_2 > 0$ $\lambda f(x_1) + (1 - \lambda) f(x_2) \geq f(\lambda x_1 + (1 - \lambda) x_2)$; consider $\lambda = b_i/B$.]

(b) Show that $D_f(p\|q) \geq 0$.

(c) Show that D_f satisfies the data processing inequality: for any transition probability kernel $W(v|u)$ from U to V, and any two distributions p and q on U

\[
D_f(p\|q) \geq D_f(\tilde{p}\|\tilde{q})
\]

where \tilde{p} and \tilde{q} are probability distributions on V defined via $\tilde{p}(v) := \sum_u W(v|u)p(u)$, and $\tilde{q}(v) := \sum_u W(v|u)q(u)$.

(d) Show that each of the following are f-divergences.

i. $D(p\|q) := \sum_u p(u)\log (p(u)/q(u))$. [Warning: \log is not the right choice for f.]

ii. $R(p\|q) := D(q\|p)$.

iii. $1 - \sum_u \sqrt{p(u)q(u)}$

iv. $\|p - q\|_1$

v. $\sum_u (p(u) - q(u))^2/q(u)$
Solution

(a) Since f is convex, for any $\lambda \in [0,1]$ and any x_1, x_2 we have
\[\lambda f(x_1) + (1 - \lambda)f(x_2) \geq f(\lambda x_1 + (1 - \lambda)x_2) \] (16)

By substitution $x_1 = a_1/b_1$, $x_2 = a_2/b_2$ and $\lambda = b_1/(b_1 + b_2)$:
\[\frac{b_1}{b_1 + b_2} f\left(\frac{a_1}{b_1}\right) + \left(1 - \frac{b_1}{b_1 + b_2}\right) f\left(\frac{a_2}{b_2}\right) \geq f\left(\frac{b_1}{b_1 + b_2} \frac{a_1}{b_1} + \left(1 - \frac{b_1}{b_1 + b_2}\right) \frac{a_2}{b_2}\right) \] (17)
\[\Leftrightarrow b_1 f\left(\frac{a_1}{b_1}\right) + b_2 f\left(\frac{a_2}{b_2}\right) \geq B f(A/B) \] (18)

Let $A_k = \sum_{i=1}^{k} a_i$, $B_k = \sum_{i=1}^{k} b_i$. As we have proved that the following inequality holds for $k = 1, 2$:
\[\sum_{i=1}^{k} b_i f(a_i/b_i) \geq B_k f(A_k/B_k). \] (19)

We assume that it also holds for $k = n$. For $k = n + 1$, we have
\[\sum_{i=1}^{n+1} b_i f(a_i/b_i) = \sum_{i=1}^{n} b_i f(a_i/b_i) + b_{n+1} f(a_{n+1}/b_{n+1}) \geq B_n f(A_n/B_n) + b_{n+1} f(a_{n+1}/b_{n+1}) \geq B_{n+1} f(A_{n+1}/B_{n+1}) \] (20) (21) (22)

By induction, for all any non-negative k, we have
\[\sum_{i=1}^{k} b_i f(a_i/b_i) \geq B_k f(A_k/B_k). \] (23)

(b) $D_f(p||q) = \sum_u q(u)f(p(u)/q(u)) \geq (\sum_u q(u)) f\left(\sum_u \frac{p(u)}{q(u)}\right) = f(1) = 0$.

(c)
\[D_f(p||q) = \sum_u q(u)f(p(u)/q(u)) = \sum_u \sum_v W(v|u)q(u)f(p(u)/q(u)) \] (24)
\[= \sum_u \sum_v W(v|u)q(u)f(W(v|u)p(u)/(W(v|u)q(u))) \] (25)
\[\geq \sum_v \left(\sum_u W(v|u)q(u)\right) f\left(\frac{\sum_u W(v|u)p(u)}{\sum_u W(v|u)q(u)}\right) \] (26)
\[= \sum_v \tilde{q}(v)f(\tilde{p}(v)/\tilde{q}(v)) \] (27)
\[= D_f(\tilde{p}||\tilde{q}) \] (28)

(d)
\[i. \ D(p||q) := \sum_u p(u) \log(p(u)/q(u)) = \sum_u q(u) \frac{p(u)}{q(u)} \log \frac{p(u)}{q(u)} \] So $f(t) = t \log t$.
\[ii. \ R(p||q) := D(q||p) = \sum_u p(u) \log(p(u)/q(u)) = \sum_u p(u) (-\log(q(u)/p(u))) \] So $f(t) = -\log t$.
\[iii. \ 1 - \sum_u \sqrt{p(u)q(u)} = \sum_u q(u) \left(1 - \sqrt{p(u)/q(u)}\right) \] So $f(t) = 1 - \sqrt{t}$.
\[iv. \ ||p - q||_1 = \sum_u |p(u) - q(u)| = \sum_u q(u)|p(u)/q(u) - 1| \] So $f(t) = |t - 1|$.
\[v. \ \sum_u (p(u) - q(u))^2/q(u) = \sum_u q(u)(p(u)/q(u) - 1)^2 \] So $f(t) = (t - 1)^2$.

4
Problem 3: Entropy and pairwise independence

Suppose X, Y, Z are pairwise independent fair flips, i.e., $I(X; Y) = I(Y; Z) = I(Z; X) = 0$.

(a) What is $H(X, Y)$?
(b) Give a lower bound to the value of $H(X, Y, Z)$.
(c) Give an example that achieves this bound.

Solution

(a) Since X, Y, Z are pairwise independent fair flips, $H(X) = H(Y) = H(Z) = 1$. $H(X, Y) = H(X) + H(Y|X) = H(X) + H(Y) - I(X; Y) = 2$.

(b) $H(X, Y, Z) = H(X, Y) + H(Z|X, Y) \geq H(X, Y) = 2$

(c) Let $Z = X + Y \mod 2$, then $H(Z|X, Y) = 0$ and $H(X, Y, Z) = H(X, Y)$.

Problem 4: Generating fair coin flips from biased coins

Suppose X_1, X_2, \ldots are the outcomes of independent flips of a biased coin. Let $Pr(X_i = 1) = p$, $Pr(X_i = 0) = 1 - p$, with p unknown. By processing this sequence we would like to obtain a sequence Z_1, Z_2, \ldots of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, (X_1, X_2), (X_3, X_4), (X_5, X_6), mapping (01) to 0, (10) to 1, and the other outcomes (00) and (11) to the empty string. After processing X_1, X_2, we will obtain either nothing, or a bit Z_1.

(a) Show that, if a bit is obtained, it is fair, i.e., $Pr(Z_1 = 0) = Pr(Z_1 = 1) = 1/2$.

In general we can process the X sequence in successive n-tuples via a function $f : \{0, 1\}^n \to \{0, 1\}^*$ where $\{0, 1\}^*$ denote the set of all finite length binary sequences (including the empty string λ). [The case in (a) is the function $f(00) = f(11) = \lambda$, $f(01) = 0$, $f(10) = 1$. The function f is chosen such that $(Z_1, \ldots, Z_K) = f(X_1, \ldots, X_n)$ are i.i.d., and fair (here K may depend on (X_1, \ldots, X_K)).

(b) With $h_2(p) = -p \log p - (1 - p) \log(1 - p)$, prove the following chain of (in)equalities.

\[
\begin{align*}
 nh_2(p) &= H(X_1, \ldots, X_n) \\
 \geq H(Z_1, \ldots, Z_K, K) \\
 &= H(K) + H(Z_1, \ldots, Z_K|K) \\
 &= H(K) + E[K] \\
 \geq E[K].
\end{align*}
\]

Consequently, on the average no more than $nh_2(p)$ fair bits can be obtained from (X_1, \ldots, X_n).

(c) Find a good f for $n = 4$.

Solution

(a) Since $Pr(X_1 = 0, X_2 = 1) = Pr(X_1 = 0) Pr(X_2 = 1) = p(1 - p)$ and $Pr(X_1 = 1, X_2 = 0) = Pr(X_1 = 1) Pr(X_2 = 0) = p(1 - p)$, the probability of $Pr(Z_1 = 0) = Pr(Z_1 = 1) = 1/2$.

5
(b) Since $h_2(p) = -p \log p - (1 - p) \log(1 - p) = H(X_i)$,

\[nh_2(p) = nH(X_i) \] (29)

\[= H(X_1, \ldots, X_n) \quad \text{[Independence of } X_i \text{]} \] (30)

\[\geq H(f(X_1, \ldots, X_n)) \quad \text{[Data Processing Inequality]} \] (31)

\[= H(Z_1, \ldots, Z_K, K) \] (32)

\[= H(K) + H(Z_1, \ldots, Z_K | K) \] (33)

\[= H(K) + \sum_k p(K = k) H(Z_1, \ldots, Z_K | K = k) \] (34)

\[= H(K) + \sum_k p(K = k) k \quad \text{[Z_1, \ldots, Z_k are i.i.d and fair when } K = k] \] (35)

\[= H(K) + E[K] \] (36)

\[\geq E[K] \] (37)

(c) when $n = 4$, (X_1, \ldots, X_4) have 16 outcomes with probabilities:

\[1 \text{ case : } \Pr(0000) = (1 - p)^4 \] (38)

\[4 \text{ cases : } \Pr(0001) = \cdots = \Pr(1000) = p(1 - p)^3 \] (39)

\[6 \text{ cases : } \Pr(0011) = \cdots = \Pr(1100) = p^2(1 - p)^2 \] (40)

\[4 \text{ cases : } \Pr(0111) = \cdots = \Pr(1110) = p^3(1 - p) \] (41)

\[1 \text{ case : } \Pr(1111) = p^4 \] (42)

Now we can define the function as follows to get i.i.d. bits and produce as many bits we can:

\[f(0000) = f(1111) = \lambda \] (43)

\[f(0011) = 1 \] (44)

\[f(1100) = 0 \] (45)

\[f(1001) = f(1110) = f(0001) = 00 \] (46)

\[f(1010) = f(1101) = f(0010) = 01 \] (47)

\[f(0110) = f(0111) = f(0100) = 10 \] (48)

\[f(0101) = f(0111) = f(1000) = 11 \] (49)

Problem 5: Extremal characterization for Rényi entropy

Given $s \geq 0$, and a random variable U taking values in U, with probabilities $p(u)$, consider the distribution $p_s(u) = p(u)^s / Z(s)$ with $Z(s) = \sum_u p(u)^s$.

(a) Show that for any distribution q on U,

\[(1 - s)H(q) - sD(q || p) = -D(q || p_s) + \log Z(s). \]

(b) Given s and p, conclude that the left hand side above is maximized by the choice by $q = p_s$ with the value $\log Z(s)$.

The quantity

\[H_s(p) := \frac{1}{1 - s} \log Z(s) = \frac{1}{1 - s} \log \sum_u p(u)^s \]

is known as the **Rényi entropy of order** s **of the random variable** U. When convenient, we will also write $H_s(U)$ instead of $H_s(p)$.
(c) Show that if U and V are independent random variables

$$H_s(UV) := H_s(U) + H_s(V).$$

[Here UV denotes the pair formed by the two random variables — not their product. E.g., if $U = \{0, 1\}$ and $V = \{a, b\}$, UV takes values in $\{0a, 0b, 1a, 1b\}.$]

Solution

(a) We start from the left hand side of the equation:

$$(1 - s)H(q) - sD(q\|p) = (1 - s)H(q) - s\sum_u q(u) \log \frac{q(u)}{p(u)}$$

$$= \sum_u q(u) \left((1 - s)\log \frac{1}{q(u)} - s\log \frac{q(u)}{p(u)}\right)$$

$$= \sum_u q(u) \log \frac{p(u)^s}{q(u)}$$

$$= \sum_u q(u) \log \frac{p_s(u)}{q(u)} Z(s)$$

$$= \sum_u q(u) \log \frac{p_s(u)}{q(u)} + \sum_u q(u) \log Z(s)$$

$$= -D(q\|p_s) + \log Z(s)$$

(b) We know that $D(q\|p_s) \geq 0$, where equality achieves for $q = p_s$. The left hand side of above equation is maximized when $q = p_s$ and has value $\log Z(s)$.

(c) Since U and V are independent random variables, we have $p(u, v) = p(u)p(v)$.

$$H_s(UV) = \frac{1}{1 - s} \log \sum_{u,v} p(u, v)^s$$

$$= \frac{1}{1 - s} \log(\sum_{u,v} p(u)^s \sum_{v} p(v)^s)$$

$$= \frac{1}{1 - s} \log(\sum_{u,v} p(u)^s) + \frac{1}{1 - s} \log \sum_{v} p(v)^s$$

$$= H_s(U) + H_s(V)$$

Problem 6: Guessing and Rényi entropy

Suppose X is a random variable taking K values $\{a_1, \ldots, a_K\}$ with $p_i = \Pr\{X = a_i\}$. We wish to guess X by asking a sequence of binary questions of the type ‘Is $X = a_i$?’ until we are answered ‘yes’. (Think of guessing a password).

A **guessing strategy** is an ordering of the K possible values of X; we first ask if X is the first value; then if it is the second value, etc. Thus the strategy is described by a function $G(x) \in \{1, \ldots, K\}$ that gives the position (first, second, ... Kth) of x in the ordering. I.e., when $X = x$, we ask $G(x)$ questions to guess the value of X. Call G the guessing function of the strategy.

For the rest of the problem suppose $p_1 \geq p_2 \geq \cdots \geq p_K$.

(a) Show that for any guessing function G, the probability of asking fewer than i questions satisfies

$$\Pr(G(X) \leq i) \leq \sum_{j=1}^{i} p_j$$

and equality holds for the guessing function G^* with $G^*(a_i) = i, \ i = 1, \ldots, K$; this is the strategy that first guesses the most probable value a_1, then the next most probable value a_2, etc.

(b) Show that for any increasing function $f : \{1, \ldots, K\} \to \mathbb{R}$, $E[f(G(X))]$ is minimized by choosing $G = G^*$. [Hint: $E[f(G(X))] = \sum_{i=1}^{K} f(i) \Pr(G = i)$. Write $Pr(G = i) = Pr(G \leq i) - Pr(G \leq i-1)$, to write the expectation in terms of $\sum_{i}[f(i) - f(i+1)]\Pr(G \leq i)$, and use (a).]

(c) For any i and $s \geq 0$ prove the inequalities

$$i \leq \sum_{j=1}^{i} (p_j/p_i)^s \leq \sum_{j} (p_j/p_i)^s$$

(d) For any $\rho \geq 0$, show that

$$E[G^*(X)^\rho] \leq \left(\sum_{i} p_i^{1-s\rho}\right) \left(\sum_{j} p_j^s\right)^\rho.$$

for any $s \geq 0$. [Hint: write $E[G^*(X)^\rho] = \sum_{i} p_i^i\rho^\rho$, and use (c) to upper bound i^ρ.]

(e) By choosing s carefully, show that

$$E[G^*(X)^\rho] \leq \left(\sum_{i} p_i^{1/(1+\rho)}\right)^{1+\rho} = \exp[\rho H_{1/(1+\rho)}(X)].$$

(f) Suppose U_1, \ldots, U_n are i.i.d., each with distribution p, and $X = (U_1, \ldots, U_n)$. (I.e., we are trying to guess a password that is made of n independently chosen letters.) Show that

$$\frac{1}{n\rho} \log E[G^*(U_1, \ldots, U_n)^\rho] \leq H_{1/(1+\rho)}(U_1)$$

[Hint: first observe that $H_\alpha(X) = nH_\alpha(U_1)$. In other words, the ρ-th moment of the number of guesses grows exponentially in n with a rate upper bounded by in terms of the Rényi entropy of the letters.

It is possible a lower bound to $E[G^*(U_1, \ldots, U_n)^\rho]$ that establishes that the exponential upper bound we found here is asymptotically tight.

Solution

(a) The event that $G(X) \leq i$ contains the probability of i distinct values.

$$\Pr(G(X) \leq i) = \sum_{j=1}^{i} \Pr(G(X) = j) \leq \sum_{j=1}^{i} p_j$$

as p_1, \ldots, p_i are the i largest probabilities. Equality holds for G^*, since $\Pr(G^* = i) = p_i$.

8
(b) Note that $\Pr(G(X) \leq 0) = 0$ and $\Pr(G(X) \leq K) = 1$.

$$E[f(G(X))] = \sum_{i=1}^{K} \Pr(G(X) = i)f(i)$$

$$= \sum_{i=1}^{K} (\Pr(G(X) \leq i) - \Pr(G(X) \leq i-1))f(i)$$

$$= \sum_{i=1}^{K-1} \Pr(G(X) \leq i)(f(i) - f(i+1)) + f(K)$$

$$\geq \sum_{i=1}^{K-1} \sum_{j=1}^{i} p_j(f(i) - f(i+1)) + f(K)$$

where each $\Pr(G(X) \leq i) \leq \sum_{j=1}^{i} p_j$ with equality holding for $G = G^*$ according to (a) and $f(i) - f(i+1) \leq 0$ since f is an increasing function. Hence, $E[f(G(X))]$ is minimized when $G = G^*$.

(c) Suppose we a distribution with probabilities $\{p_1, \ldots, p_K\}$. For any $i \in \{1, \ldots, K\}$ and $s > 0$:

$$i = \sum_{j=1}^{i} 1^s \leq \sum_{j=1}^{i} (p_j/p_i)^s \leq \sum_{j=1}^{K} (p_j/p_i)^s + \sum_{j=i+1}^{K} (p_j/p_i)^s = \sum_{j=1}^{K} (p_j/p_i)^s$$

$$\leq \sum_{j=1}^{K} \sum_{i=1}^{j} p_j(p_i/p_j)^{(1-s)p} = \left(\sum_{i=1}^{K} p_i^{1+(1-s)p}\right)^{1+(1-s)p} \left(\sum_{j=1}^{K} p_j^{s}\right)^{s}$$

$$\leq \left(\sum_{i=1}^{K} p_i \right)^{(1+(1-s)p)} \left(\sum_{j=1}^{K} p_j^{s}\right)^{s}$$

where the first inequality holds because $p_j/p_i \geq 1$ for each $1 \leq j \leq i$.

(d)

$$E[G^*(X)^p] = \sum_i \Pr(G^*(X) = i)^p \leq \sum_i p_i \left(\sum_j p_j^{p_i}\right)^{p} \leq \sum_i \left(\sum_j p_j^{1+(1-s)p}\right)^{1+(1-s)p}$$

(e) Since inequality (66) holds for any $s > 0$, we can choose $s = \frac{1}{1+\rho}$ and get

$$E[G^*(X)^p] \leq \left(\sum_i p_i^{1+(1-s)p}\right)^{1+(1-s)p} \left(\sum_j p_j^{s}\right)^{s}$$

$$= \exp \left[\frac{1}{1+\rho} \log \sum_i p_i^{1+(1-s)p} \right]$$

$$= \exp \left[\rho \frac{1}{1+\rho} \log \sum_i p_i^{1+(1-s)p} \right]$$

$$= \rho \frac{1}{1+\rho} \log \sum_i p_i^{1+(1-s)p}$$

$$= \rho H_{1/(1+\rho)}(X)$$

(f) Follow the hint that $H_\alpha(X) = nH_\alpha(U_1)$:

$$\frac{1}{n\rho} \log E[G^*(U_1, \ldots, U_n)^p] \leq \frac{1}{n\rho} \log \exp[\rho H_{1/(1+\rho)}(X)]$$

$$= \frac{1}{n} H_{1/(1+\rho)}(X)$$

$$= H_{1/(1+\rho)}(U_1)$$