Problem 1: Review of Random Variables

Let X and Y be discrete random variables defined on some probability space with a joint pmf $p_{XY}(x,y)$. Let $a,b \in \mathbb{R}$ be fixed.

(a) Prove that $E[aX + bY] = aE[X] + bE[Y]$. Do not assume independence.

(b) Prove that if X and Y are independent random variables, then $E[X \cdot Y] = E[X] \cdot E[Y]$.

(c) Assume that X and Y are not independent. Find an example where $E[X \cdot Y] \neq E[X] \cdot E[Y]$, and another example where $E[X \cdot Y] = E[X] \cdot E[Y]$.

(d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,

\[\text{Cov}(X,Y) := E[(X - E[X])(Y - E[Y])] = 0. \] (1)

(e) Find an example where X and Y are uncorrelated but dependent.

(f) Assume that X and Y are uncorrelated and let σ^2_X and σ^2_Y be the variances of X and Y, respectively. Find the variance of $aX + bY$ and express it in terms of $\sigma^2_X, \sigma^2_Y, a, b$.

Hint: First show that $\text{Cov}(X,Y) = E[X \cdot Y] - E[X] \cdot E[Y]$.

Solution

(a)

\[
E[aX + bY] = \sum_x \sum_y (ax + by)p_{XY}(x,y) \\
= \sum_x ax \sum_y p_{XY}(x,y) + \sum_y by \sum_x p_{XY}(x,y) \\
= a \sum_x xp_X(x) + b \sum_y yp_Y(y) \\
= aE[X] + bE[Y].
\]

(b) If X and Y are independent, we have $p_{XY}(x,y) = p_X(x)p_Y(y)$, then

\[
E[X \cdot Y] = \sum_X \sum_Y xy p_{XY}(x,y) \\
= \sum_X \sum_Y xp_X(x)y p_Y(y) \\
= \sum_X xp_X(x) \sum_Y yp_Y(y) \\
= E[X] \cdot E[Y]
\]

(c) For the first example, suppose $Pr(X = 0, Y = 1) = Pr(X = 1, Y = 0) = \frac{1}{2}$, and $Pr(X = 0, Y = 0) = Pr(X = 1, Y = 1) = 0$. X, Y are dependent, and we have $E[X \cdot Y] = 0$ while $E[X]E[Y] = \frac{1}{4}$.
For the second example, suppose \(Pr(X = -1, Y = 0) = Pr(X = 0, Y = 1) = Pr(X = 1, Y = 0) = \frac{1}{3} \). \(X,Y \) are dependent. Obviously we have \(\mathbb{E}[X \cdot Y] = 0 \), and furthermore \(\mathbb{E}[X] = 0 \), hence \(\mathbb{E}[X]\mathbb{E}[Y] = 0 \).

(d) If \(X \) and \(Y \) are independent, we have \(p_{XY}(x, y) = p_X(x)p_Y(y) \), then

\[
\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \sum_x \sum_y (x - \mathbb{E}[X])(y - \mathbb{E}[Y]) p_{XY}(x, y) \\
= \sum_x \sum_y (x - \mathbb{E}[X])(y - \mathbb{E}[Y]) p_X(x)p_Y(y) \\
= \sum_x (x - \mathbb{E}[X]) \sum_y (y - \mathbb{E}[Y]) p_Y(y) \\
= (\mathbb{E}[X] - \mathbb{E}[X])(\mathbb{E}[Y] - \mathbb{E}[Y]) = 0.
\]

Thus, \(X \) and \(Y \) are uncorrelated.

(e) One example where \(X \) and \(Y \) are uncorrelated but dependent is

\[
\mathbb{P}_{XY}(x, y) = \begin{cases} \frac{1}{4} & \text{if } (x, y) \in \{(-1, 0), (1, 0), (0, 1)\}, \\
0 & \text{otherwise.}
\end{cases}
\]

First, it can be easily checked that \(\mathbb{E}[X \cdot Y] = 0 = \mathbb{E}[X] \cdot \mathbb{E}[Y] \) (note that \(\mathbb{E}[X] = 0 \)). Second, \(X \) and \(Y \) are dependent since \(\mathbb{P}_{XY}(1, 0) = \frac{1}{3} \) but \(\mathbb{P}_X(1)\mathbb{P}_Y(0) = \frac{1}{3} \times \frac{2}{3} \).

(f) First, we have

\[
\text{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])], \\
= \mathbb{E}[XY - X\mathbb{E}[Y] - \mathbb{E}[X]Y + \mathbb{E}[X]\mathbb{E}[Y]] \\
= \mathbb{E}[X \cdot Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y].
\]

Thus, \(\text{Cov}(X, Y) = 0 \) if and only if \(\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y] \).

Then,

\[
\sigma_{aX+bY}^2 = \mathbb{E}[(aX+bY - \mathbb{E}[aX+bY])^2] \\
= \mathbb{E}[(aX + bY - (\mathbb{E}[aX] + b\mathbb{E}[Y]))^2] \\
= a^2\mathbb{E}[X^2] + 2ab\mathbb{E}[X \cdot Y] + b^2\mathbb{E}[Y^2] - a^2\mathbb{E}[X]^2 - 2ab\mathbb{E}[X]\mathbb{E}[Y] - b^2\mathbb{E}[Y]^2 \\
= a^2(\mathbb{E}[X^2] - \mathbb{E}[X]^2) + b^2(\mathbb{E}[Y^2] - \mathbb{E}[Y]^2) \\
= a^2\sigma_X^2 + b^2\sigma_Y^2.
\]

We remark that since the independence of \(X \) and \(Y \) implies \(\text{Cov}(X, Y) = 0 \), we also have \(\sigma_{aX+bY}^2 = a^2\sigma_X^2 + b^2\sigma_Y^2 \) if \(X \) and \(Y \) are independent.

Problem 2: Review of Gaussian Random Variables

A random variable \(X \) with probability density function

\[
p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} \tag{2}
\]

is called a *Gaussian* random variable.

(a) Explicitly calculate the mean \(\mathbb{E}[X] \), the second moment \(\mathbb{E}[X^2] \), and the variance \(\text{Var}[X] \) of the random variable \(X \).
(b) Let us now consider events of the following kind:

\[P(X < \alpha) \]

Unfortunately for Gaussian random variables this cannot be calculated in closed form. Instead, we will rewrite it in terms of the standard Q-function:

\[Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} \, du \]

Express \(P(X < \alpha) \) in terms of the Q-function and the parameters \(m \) and \(\sigma^2 \) of the Gaussian pdf.

Like we said, the Q-function cannot be calculated in closed form. Therefore, it is important to have bounds on the Q-function. In the next 3 subproblems, you derive the most important of these bounds, learning some very general and powerful tools along the way:

(c) Derive the Markov inequality, which says that for any non-negative random variable \(X \) and positive \(a \), we have

\[P(X \geq a) \leq \frac{E[X]}{a} \]

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real random variable \(Z \) exceeds \(b \) is given by

\[P(Z \geq b) \leq E[e^{s(Z-b)}], \quad s \geq 0. \]

(e) Use the Chernoff bound to show that

\[Q(x) \leq e^{-\frac{x^2}{2}} \] for \(x \geq 0 \).

Solution

(a) First,

\[E[X] = \int_{-\infty}^{\infty} xp_X(x) \, dx \]

\[= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} xe^{-\frac{(x-m)^2}{2\sigma^2}} \, dx \]

\[\overset{(*)}{=} \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} u e^{-\frac{u^2}{2\sigma^2}} \, du + m \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{u^2}{2\sigma^2}} \, du \]

\[\overset{(†)}{=} 0 + m \]

\[= m, \]

where \((*)\) follows by a change of variable \(u = x - m \) and \((†)\) follows since the first integrand in (8) is an odd function and the second integrand in (8) is a probability density function. We remark that the integral

\[\int_{-\infty}^{\infty} e^{-x^2} \, dx \]
known as Gaussian integral, can be evaluated explicitly to be $\sqrt{\pi}$. Second,

\[
E[X^2] = \int_{-\infty}^{\infty} x^2 p_X(x) \, dx = \frac{1}{\sqrt{2\pi} \sigma^2} \int_{-\infty}^{\infty} x^2 e^{-\frac{(x-m)^2}{2\sigma^2}} \, dx
\]

\[
\equiv \frac{1}{\sqrt{2\pi} \sigma^2} \int_{-\infty}^{\infty} u^2 e^{-\frac{u^2}{2\sigma^2}} \, du + \frac{2m}{\sqrt{2\pi} \sigma^2} \int_{-\infty}^{\infty} u e^{-\frac{u^2}{2\sigma^2}} \, du + m^2 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{u^2}{2\sigma^2}} \, du \quad (9)
\]

\[
\equiv \sigma^2 + 0 + m^2 = \sigma^2 + m^2,
\]

where (*) follows by a change of variable $u = x - m$ and (†) follows from the same arguments in the evaluation of $E[X]$ and an integration by parts to the first integral in (9):

\[
\frac{1}{2\pi \sigma^2} \int_{-\infty}^{\infty} u^2 e^{-\frac{u^2}{2\sigma^2}} \, du = -\frac{\sigma^2}{\sqrt{2\pi} \sigma^2} \left(u e^{-\frac{u^2}{2\sigma^2}} \bigg|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-\frac{u^2}{2\sigma^2}} \, du \right)
\]

\[
= 0 + \sigma^2.
\]

Therefore,

\[
Var[X] = E[X - E[X]]^2 = E[X^2] - E[X]^2 = \sigma^2 + m^2 - m^2 = \sigma^2.
\]

(b) \[
P(X < \alpha) = \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{(x-m)^2}{2\sigma^2}} \, dx
\]

\[
\equiv \int_{-\infty}^{\frac{\alpha-m}{\sigma}} \sqrt{2\pi} e^{-\frac{u^2}{2}} \, du = 1 - Q \left(\frac{\alpha-m}{\sigma} \right),
\]

where (*) follows by a change of variable $u = \frac{x-m}{\sigma}$.

(c) \[
E[X] = \int_{0}^{\alpha} x p_X(x) \, dx + \int_{\alpha}^{\infty} x p_X(x) \, dx
\]

\[
\geq 0 + a \int_{\alpha}^{\infty} p_X(x) \, dx = aP(X \geq a).
\]

(d) Fix $s \geq 0$, then we have

\[
P(Z \geq b) \leq P(s(Z - b) \geq 0) = P(e^{s(Z-b)} \geq e^0) \leq E[e^{s(Z-b)}],
\]

where (*) follows from the Markov inequality.
(c) Let X be a Gaussian random variable with mean zero and unit variance, then we have

$$Q(x) = P(X \geq x) \leq E[e^{s(X-x)}]$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{s(u-x)} e^{-\frac{u^2}{2}} du$$

$$= e^{-sx + \frac{s^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(u-x)^2}{2}} du$$

$$= e^{-sx + \frac{s^2}{2}},$$

where (\ast) follows from the Chernoff bound. In order to get the tightest bound, we need to minimize $-sx + \frac{s^2}{2}$ which gives $s = x$ and then the desired bound is established.

Problem 3: Moment Generating Function

Let X be a real-valued random variable taking values on a finite set. The logarithmic moment generating function is defined as follows.

$$\phi(s) := \ln E[\exp(sX)] = \ln \sum_x p(x) \exp(sx)$$

(a) Show that $p_s(x) := p(x) \exp(sx) \exp(-\phi(s))$ is a probability mass function.

(b) Let X_s be a random variable taking the same value as X but with probabilities $p_s(x)$, show that $\phi'(s) = E[X_s]$.

(c) Show that $\phi''(s) = \text{Var}(X_s) := E[X_s^2] - E[X_s]^2$

and conclude that $\phi''(s) \geq 0$ and the inequality is strict except when X is deterministic.

(d) Let $x_{\text{min}} := \min\{x : p(x) > 0\}$ and $x_{\text{max}} := \max\{x : p(x) > 0\}$ be the smallest and largest values X takes. Show that

$$\lim_{s \to -\infty} \phi'(s) = x_{\text{min}}, \quad \text{and} \quad \lim_{s \to \infty} \phi'(s) = x_{\text{max}}.$$

Solution

(a) To show that $p_s(x)$ is a probability mass function, we need to show (i) $p_s(x)$ is non-negative for all x and (ii) $\sum_s p_s(x) = 1$. For (i), since $p(x) \geq 0$, $\exp(sx) \geq 0$ and $\exp(-\phi(s)) \geq 0$, we have $p_s(x) \geq 0$. For (ii), the sum of all $p_s(x)$ can be computed as follows.

$$\sum_s p_s(x) = \sum_x p(x) \exp(sx) \exp(-\phi(s))$$

$$= \exp(-\phi(s)) \sum_x p(x) \exp(sx)$$

$$= \exp(-\ln E[\exp(sX)]) E[\exp(sX)]$$

$$= \frac{E[\exp(sX)]}{E[\exp(sX)]} = 1$$

Both conditions are satisfied. Hence, $p_s(x)$ is a probability mass function.
As $\phi(s) := \ln E[\exp(sX)]$, we have

$$
\phi'(s) = \frac{E[X \exp(sX)]}{E[\exp(sX)]} = E[X \exp(sX) \exp(-\phi(s))] = E[X_s] \quad (14)
$$

$$
\phi''(s) = \frac{E[X^2 \exp(sX)]}{E[\exp(sX)]} = \frac{E[X \exp(sX)]E[X \exp(sX)]}{E[\exp(sX)]^2} \quad (15)
$$

The second term is $E[X_s]^2$ and the first term equals $\sum_x x^2 \exp(sx)/\exp(\phi(s)) = E[X_s^2]$. So $\phi''(s) = \text{Var}(X_s)$. Moreover, $\text{Var}(X_s) \geq 0$ with equality only when X_s is deterministic. But X_s is deterministic only when X is.

(d) Observe that

$$
\phi'(s) = \frac{E[X \exp(sX)]}{E[\exp(sX)]} = \frac{E[X \exp(sX)] \exp(-sx_{\text{max}})}{E[\exp(sX)] \exp(-sx_{\text{max}})} \quad (16)
$$

$$
= \frac{\sum_x p(x) x \exp(-s(x_{\text{max}} - x))}{\sum_x p(x) \exp(-s(x_{\text{max}} - x))} \quad (17)
$$

In the sums above, as $s \to \infty$, all terms vanish except the ones for $x = x_{\text{max}}$. Hence we have

$$
\lim_{s \to \infty} \phi'(s) = \frac{p(x_{\text{max}}) x_{\text{max}}}{p(x_{\text{max}})} = x_{\text{max}} \quad (18)
$$

Similarly, we can show that $\lim_{s \to -\infty} \phi'(s) = x_{\text{min}}$.