Problem 1: Divergence and L_1

Suppose p and q are two probability mass functions on a finite set U. (I.e., for all $u \in U$, $p(u) \geq 0$ and $\sum_{u \in U} p(u) = 1$; similarly for q.)

(a) Show that the L_1 distance $\|p - q\|_1 := \sum_{u \in U} |p(u) - q(u)|$ between p and q satisfies

$$\|p - q\|_1 = 2 \max_{S \subseteq U} p(S) - q(S)$$

with $p(S) = \sum_{u \in S} p(u)$ (and similarly for q), and the maximum is taken over all subsets S of U.

For α and β in $[0,1]$, define the function $d_2(\alpha \| \beta) := \alpha \log \frac{\alpha}{\beta} + (1 - \alpha) \log \frac{1 - \alpha}{1 - \beta}$. Note that $d_2(\alpha \| \beta)$ is the divergence of the distribution $(\alpha, 1 - \alpha)$ from the distribution $(\beta, 1 - \beta)$.

(b) Show that the first and second derivatives of d_2 with respect to its first argument α satisfy $d_2'(\beta \| \beta) = 0$ and $d_2''(\alpha \| \beta) = \frac{\log e}{\alpha(1 - \alpha)} \geq 4 \log e$.

(c) By Taylor’s theorem conclude that

$$d_2(\alpha \| \beta) \geq 2(\log e)(\alpha - \beta)^2.$$

(d) Show that for any $S \subseteq U$

$$D(p \| q) \geq d_2(p(S) \| q(S))$$

[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that

$$D(p \| q) \geq \frac{\log e}{4} \|p - q\|_1^2.$$

(f) Show, by example, that $D(p \| q)$ can be $+\infty$ even when $\|p - q\|_1$ is arbitrarily small. [Hint: considering $U = \{0,1\}$ is sufficient.] Consequently, there is no generally valid inequality that upper bounds $D(p \| q)$ in terms of $\|p - q\|_1$.

1
Problem 2: Other Divergences

Suppose f is a convex function defined on $(0, \infty)$ with $f(1) = 0$. Define the f-divergence of a distribution p from a distribution q as

$$D_f(p||q) := \sum_u q(u)f(p(u)/q(u)).$$

In the sum above we take $f(0) := \lim_{t \to 0} f(t)$, $0f(0/0) := 0$, and $0f(a/0) := a\lim_{t \to 0} tf(a/t) = a$.

(a) Show that for any non-negative a_1, a_2, b_1, b_2 and with $A = a_1 + a_2$, $B = b_1 + b_2$,

$$b_1f(a_1/b_1) + b_2f(a_2/b_2) \geq Bf(A/B);$$

and that in general, for any non-negative a_1, \ldots, a_k, b_1, \ldots, b_k, and $A = \sum_i a_i$, $B = \sum_i b_i$, we have

$$\sum b_i f(a_i/b_i) \geq Bf(A/B).$$

[Hint: since f is convex, for any $\lambda \in [0, 1]$ and any $x_1, x_2 > 0$ $\lambda f(x_1) + (1 - \lambda)f(x_2) \geq f(\lambda x_1 + (1 - \lambda)x_2)$; consider $\lambda = b_1/B$.]

(b) Show that $D_f(p||q) \geq 0$.

(c) Show that D_f satisfies the data processing inequality: for any transition probability kernel $W(v|u)$ from U to V, and any two distributions p and q on U

$$D_f(p||q) \geq D_f(\tilde{p}||\tilde{q})$$

where \tilde{p} and \tilde{q} are probability distributions on V defined via $\tilde{p}(v) := \sum_u W(v|u)p(u)$, and $\tilde{q}(v) := \sum_u W(v|u)q(u)$.

(d) Show that each of the following are f-divergences.

i. $D(p||q) := \sum_u p(u)\log(p(u)/q(u)).$ [Warning: log is not the right choice for f.]

ii. $R(p||q) := D(q||p)$.

iii. $1 - \sum_u \sqrt{p(u)q(u)}$

iv. $||p - q||_1$.

v. $\sum_u (p(u) - q(u))^2/q(u)$

Problem 3: Entropy and pairwise independence

Suppose X, Y, Z are pairwise independent fair flips, i.e., $I(X;Y) = I(Y;Z) = I(Z;X) = 0$.

(a) What is $H(X,Y)$?

(b) Give a lower bound to the value of $H(X,Y,Z)$.

(c) Give an example that achieves this bound.
Problem 4: Generating fair coin flips from biased coins

Suppose X_1, X_2, \ldots are the outcomes of independent flips of a biased coin. Let $\Pr(X_i = 1) = p$, $\Pr(X_i = 0) = 1 - p$, with p unknown. By processing this sequence we would like to obtain a sequence Z_1, Z_2, \ldots of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, $(X_1, X_2), (X_3, X_4), (X_5, X_6)$, mapping (01) to 0, (10) to 1, and the other outcomes (00) and (11) to the empty string. After processing X_1, X_2, we will obtain either nothing, or a bit Z_1.

(a) Show that, if a bit is obtained, it is fair, i.e., $\Pr(Z_1 = 0) = \Pr(Z_1 = 1) = 1/2$.

In general we can process the X sequence in successive n-tuples via a function $f : \{0, 1\}^n \to \{0, 1\}^*$ where $\{0, 1\}^*$ denote the set of all finite length binary sequences (including the empty string λ). The case in (a) is the function $f(00) = f(11) = \lambda$, $f(01) = 0$, $f(10) = 1$. The function f is chosen such that $(Z_1, \ldots, Z_K) = f(X_1, \ldots, X_n)$ are i.i.d., and fair (here K may depend on (X_1, \ldots, X_K).

(b) With $h_2(p) = -p \log p - (1 - p) \log(1 - p)$, prove the following chain of (in)equalities.

$$nh_2(p) = H(X_1, \ldots, X_n) \geq H(Z_1, \ldots, Z_K, K) = H(K) + H(Z_1, \ldots, Z_K | K) = H(K) + E[K] \geq E[K].$$

Consequently, on the average no more than $nh_2(p)$ fair bits can be obtained from (X_1, \ldots, X_n).

(c) Find a good f for $n = 4$.

Problem 5: Extremal characterization for Rényi entropy

Given $s \geq 0$, and a random variable U taking values in \mathcal{U}, with probabilities $p(u)$, consider the distribution $p_s(u) = p(u)^s / Z(s)$ with $Z(s) = \sum_u p(u)^s$.

(a) Show that for any distribution q on \mathcal{U},

$$(1 - s)H(q) - sD(q||p) = -D(q||p_s) + \log Z(s).$$

(b) Given s and p, conclude that the left hand side above is maximized by the choice by $q = p_s$ with the value $\log Z(s)$.

The quantity $H_s(p) := \frac{1}{1 - s} \log Z(s) = \frac{1}{1 - s} \log \sum u p(u)^s$ is known as the Rényi entropy of order s of the random variable U. When convenient, we will also write $H_s(U)$ instead of $H_s(p)$.

(c) Show that if U and V are independent random variables

$$H_s(UV) := H_s(U) + H_s(V).$$

[Here UV denotes the pair formed by the two random variables — not their product. E.g., if $\mathcal{U} = \{0, 1\}$ and $\mathcal{V} = \{a, b\}$, UV takes values in $\{0a, 0b, 1a, 1b\}$.]
Problem 6: Guessing and Rényi entropy

Suppose X is a random variable taking K values \{\(a_1, \ldots, a_K\)\} with \(p_i = \operatorname{Pr}\{X = a_i\}\). We wish to guess X by asking a sequence of binary questions of the type ‘Is $X = a_i$?’ until we are answered ‘yes’. (Think of guessing a password).

A guessing strategy is an ordering of the K possible values of X; we first ask if X is the first value; then if it is the second value, etc. Thus the strategy is described by a function $G(x) \in \{1, \ldots, K\}$ that gives the position (first, second, ... Kth) of x in the ordering. I.e., when $X = x$, we ask $G(x)$ questions to guess the value of X. Call G the guessing function of the strategy.

For the rest of the problem suppose $p_1 \geq p_2 \geq \cdots \geq p_K$.

(a) Show that for any guessing function G, the probability of asking fewer than i questions satisfies

$$\operatorname{Pr}(G(X) \leq i) \leq \sum_{j=1}^{i} p_j$$

and equality holds for the guessing function G^* with $G^*(a_i) = i$, $i = 1, \ldots, K$; this is the strategy that first guesses the most probable value a_1, then the next most probable value a_2, etc.

(b) Show that for any increasing function $f : \{1, \ldots, K\} \to \mathbb{R}$, $E[f(G(X))]$ is minimized by choosing $G = G^*$. [Hint: $E[f(G(X))] = \sum_{i=1}^{K} f(i) \operatorname{Pr}(G = i)$. Write $\operatorname{Pr}(G = i) = \operatorname{Pr}(G \leq i) - \operatorname{Pr}(G \leq i-1)$, to write the expectation in terms of $\sum_{i} [f(i) - f(i+1)] \operatorname{Pr}(G \leq i)$, and use (a).]

(c) For any i and $s \geq 0$ prove the inequalities

$$i \leq \sum_{j=1}^{i} (p_j/p_i)^s \leq \sum_{j} (p_j/p_i)^s$$

(d) For any $\rho \geq 0$, show that

$$E[G^*(X)^\rho] \leq \left(\sum_{i} p_i^{1-\rho}\right) \left(\sum_{j} p_j^\rho\right)^\rho.$$

for any $s \geq 0$. [Hint: write $E[G^*(X)^\rho] = \sum_i p_i i^\rho$, and use (c) to upper bound i^ρ]

(e) By a choosing s carefully, show that

$$E[G^*(X)^\rho] \leq \left(\sum_{i} p_i^{1/(1+\rho)}\right)^{1+\rho} = \exp[\rho H_{1/(1+\rho)}(X)].$$

(f) Suppose U_1, \ldots, U_n are i.i.d., each with distribution p, and $X = (U_1, \ldots, U_n)$. (I.e., we are trying to guess a password that is made of n independently chosen letters.) Show that

$$\frac{1}{n \rho} \log E[G^*(U_1, \ldots, U_n)^\rho] \leq H_{1/(1+\rho)}(U_1)$$

[Hint: first observe that $H_{\alpha}(X) = n H_{\alpha}(U_1)$. In other words, the ρ-th moment of the number of guesses grows exponentially in n with a rate upper bounded by in terms of the Rényi entropy of the letters.

It is possible a lower bound to $E[G(U_1, \ldots, U_n)^\rho]$ that establishes that the exponential upper bound we found here is asymptotically tight.