Problem 1: Moment Generating Function

In the class we had considered the logarithmic moment generating function
\[\phi(s) := \ln E[\exp(sX)] = \ln \sum_x p(x) \exp(sx) \]
of a real-valued random variable \(X \) taking values on a finite set, and showed that
\[\phi'(s) = E[Xs] \]
where \(X_s \) is a random variable taking the same values as \(X \) but with probabilities
\[p_s(x) := p(x) \exp(sx) \exp(-\phi(s)) . \]

(a) Show that
\[\phi''(s) = \text{Var}(X_s) := E[X_s^2] - E[X_s]^2 \]
and conclude that \(\phi''(s) \geq 0 \) and the inequality is strict except when \(X \) is deterministic.

(b) Let \(x_{\min} := \min\{x : p(x) > 0\} \) and \(x_{\max} := \max\{x : p(x) > 0\} \) be the smallest and largest values \(X \) takes. Show that
\[\lim_{s \to -\infty} \phi'(s) = x_{\min}, \quad \text{and} \quad \lim_{s \to \infty} \phi'(s) = x_{\max}. \]

Problem 2: Divergence and \(L_1 \)

Suppose \(p \) and \(q \) are two probability mass functions on a finite set \(\mathcal{U} \). (I.e., for all \(u \in \mathcal{U} \), \(p(u) \geq 0 \) and \(\sum_{u \in \mathcal{U}} p(u) = 1 \); similarly for \(q \).)

(a) Show that the \(L_1 \) distance \(\|p - q\|_1 := \sum_{u \in \mathcal{U}} |p(u) - q(u)| \) between \(p \) and \(q \) satisfies
\[\|p - q\|_1 = 2 \max_{S,S' \subseteq \mathcal{U}} p(S) - q(S) \]
with \(p(S) = \sum_{u \in S} p(u) \) (and similarly for \(q \)), and the maximum is taken over all subsets \(S \) of \(\mathcal{U} \).

For \(\alpha \) and \(\beta \) in \([0,1]\), define the function \(d_2(\alpha\|\beta) := \alpha \log \frac{\alpha}{\beta} + (1 - \alpha) \log \frac{1 - \alpha}{1 - \beta} \). Note that \(d_2(\alpha\|\beta) \) is the divergence of the distribution \((\alpha,1-\alpha)\) from the distribution \((\beta,1-\beta)\).

(b) Show that the first and second derivatives of \(d_2 \) with respect to its first argument \(\alpha \) satisfy
\[d_2''(\beta\|\beta) = 0 \quad \text{and} \quad d_2''(\alpha\|\beta) = \frac{\log e}{\alpha(1-\alpha)} \geq 4 \log e . \]
(c) By Taylor’s theorem conclude that
\[d_2(\alpha \| \beta) \geq 2(\log e)(\alpha - \beta)^2. \]

(d) Show that for any \(S \subset U \)
\[D(p\|q) \geq d_2(p(S)\|q(S)) \]
[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that
\[D(p\|q) \geq \frac{\log e}{4} \| p - q \|_1^2. \]

(f) Show, by example, that \(D(p\|q) \) can be \(+\infty\) even when \(\| p - q \|_1 \) is arbitrarily small. [Hint: considering \(U = \{0,1\} \) is sufficient.] Consequently, there is no generally valid inequality that upper bounds \(D(p\|q) \) in terms of \(\| p - q \|_1 \).

Problem 3: Other Divergences

Suppose \(f \) is a convex function defined on \((0, \infty)\) with \(f(1) = 0 \). Define the \(f \)-divergence of a distribution \(p \) from a distribution \(q \) as
\[
D_f(p\|q) := \sum_u q(u)f(p(u)/q(u)).
\]
In the sum above we take \(f(0) := \lim_{t \to 0} f(t) \), \(0f(0/0) := 0 \), and \(0f(a/0) := \lim_{t \to 0} tf(a/t) = a \lim_{t \to 0} tf(1/t) \).

(a) Show that for any non-negative \(a_1, a_2, b_1, b_2 \) and with \(A = a_1 + a_2, B = b_1 + b_2 \),
\[
b_1f(a_1/b_1) + b_2f(a_2/b_2) \geq Bf(A/B);
\]
and that in general, for any non-negative \(a_1, \ldots, a_k, b_1, \ldots, b_k \), and \(A = \sum_i a_i, B = \sum_i b_i \), we have
\[
\sum_i b_if(a_i/b_i) \geq Bf(A/B).
\]
[Hint: since \(f \) is convex, for any \(\lambda \in [0,1] \) and any \(x_1, x_2 > 0 \)
\(\lambda f(x_1) + (1 - \lambda)f(x_2) \geq f(\lambda x_1 + (1 - \lambda)x_2) \); consider \(\lambda = b_1/A \).]

(b) Show that \(D_f(p\|q) \geq 0 \).

(c) Show that \(D_f \) satisfies the data processing inequality: for any transition probability kernel \(W(v|u) \) from \(U \) to \(V \), and any two distributions \(p \) and \(q \) on \(U \)
\[
D_f(p\|q) \geq D_f(\tilde{p}\|\tilde{q})
\]
where \(\tilde{p} \) and \(\tilde{q} \) are probability distributions on \(V \) defined via \(\tilde{p}(v) := \sum_u W(v|u)p(u) \), and \(\tilde{q}(v) := \sum_u W(v|u)q(u) \).

(d) Show that each of the following are \(f \)-divergences.

i. \(D(p\|q) := \sum_u p(u) \log(p(u)/q(u)) \). [Warning: \(\log \) is not the right choice for \(f \).]
ii. \(R(p\|q) := D(q\|p) \).
iii. \(1 - \sum_u \sqrt{p(u)q(u)} \)
iv. \(\| p - q \|_1 \)
v. \(\sum_u (p(u) - q(u))^2/q(u) \)
Problem 4: Entropy and pairwise independence

Suppose X, Y, Z are pairwise independent fair flips, i.e., $I(X; Y) = I(Y; Z) = I(Z; X) = 0$.

(a) What is $H(X, Y)$?
(b) Give a lower bound to the value of $H(X, Y, Z)$.
(c) Give an example that achieves this bound.

Problem 5: Generating fair coin flips from biased coins

Suppose X_1, X_2, \ldots are the outcomes of independent flips of a biased coin. Let $\Pr(X_i = 1) = p$, $\Pr(X_i = 0) = 1 - p$, with p unknown. By processing this sequence we would like to obtain a sequence Z_1, Z_2, \ldots of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, $(X_1, X_2), (X_3, X_4), (X_5, X_6)$, mapping (01) to 0, (10) to 1, and the other outcomes (00) and (11) to the empty string. After processing X_1, X_2, \ldots, we will obtain either nothing, or a bit Z_1.

(a) Show that, if a bit is obtained, it is fair, i.e., $\Pr(Z_1 = 0) = \Pr(Z_1 = 1) = 1/2$.
(b) With $h_2(p) = -p \log p - (1 - p) \log (1 - p)$, prove the following chain of (in)equalities.

\[
nh_2(p) = H(X_1, \ldots, X_n) \\
\geq H(Z_1, \ldots, Z_K, K) \\
= H(K) + H(Z_1, \ldots, Z_K | K) \\
= H(K) + E[K] \\
\geq E[K].
\]

Consequently, on the average no more than $nh_2(p)$ fair bits can be obtained from (X_1, \ldots, X_n).

(c) Find a good f for $n = 4$.

Problem 6: Extremal characterization for Rényi entropy

Given $s \geq 0$, and a random variable U taking values in \mathcal{U}, with probabilities $p(u)$, consider the distribution $p_s(u) = p(u) / s$ with $Z(s) = \sum_u p(u)^s$.

(a) Show that for any distribution q on \mathcal{U},

\[
(1 - s)H(q) - sD(q||p) = -D(q||p_s) + \log Z(s).
\]

(b) Given s and p, conclude that the left hand side above is maximized by the choice by $q = p_s$ with the value $\log Z(s)$.
The quantity
\[H_s(p) := \frac{1}{1-s} \log Z(s) = \frac{1}{1-s} \log \sum_u p(u)^s \]
is known as the Rényi entropy of order \(s \) of the random variable \(U \). When convenient, we will also write \(H_s(U) \) instead of \(H_s(p) \).

(c) Show that if \(U \) and \(V \) are independent random variables
\[H_s(UV) := H_s(U) + H_s(V). \]

[Here \(UV \) denotes the pair formed by the two random variables — not their product. E.g., if \(U = \{0,1\} \) and \(V = \{a,b\} \), \(UV \) takes values in \(\{0a,0b,1a,1b\} \).]

Problem 7: Guessing and Rényi entropy

Suppose \(X \) is a random variable taking values \(K \) values \(\{a_1, \ldots, a_K\} \) with \(p_i = \Pr\{X = a_i\} \). We wish to guess \(X \) by asking a sequence of binary questions of the type ‘Is \(X = a_i \)?’ until we are answered ‘yes’. (Think of guessing a password).

A guessing strategy is an ordering of the \(K \) possible values of \(X \); we first ask if \(X \) is the first value; then if it is the second value, etc. Thus the strategy is described by a function \(G(x) \in \{1, \ldots, K\} \) that gives the position (first, second, ..., \(K \) th) of \(x \) in the ordering. I.e., when \(X = x \), we ask \(G(x) \) questions to guess the value of \(X \). Call \(G \) the guessing function of the strategy.

For the rest of the problem suppose \(p_1 \geq p_2 \geq \cdots \geq p_K \).

(a) Show that for any guessing function \(G \), the probability of asking fewer than \(i \) questions satisfies
\[\Pr(G(X) \leq i) \leq \sum_{j=1}^i p_j \]
and equality holds for the guessing function \(G^* \) with \(G^*(a_i) = i \), \(i = 1, \ldots, K \); this is the strategy that first guesses the most probable value \(a_1 \), then the next most probable value \(a_2 \), etc.

(b) Show that for any increasing function \(f : \{1, \ldots, K\} \to \mathbb{R} \), \(E[f(G(X))] \) is minimized by choosing \(G = G^* \). [Hint: \(E[f(G(X))] = \sum_{i=1}^K f(i) \Pr(G = i) \). Write \(\Pr(G = i) = \Pr(G \leq i) - \Pr(G \leq i-1) \), to write the expectation in terms of \(\sum_i [(f(i) - f(i+1)] \Pr(G \leq i) \), and use (a).]

(c) For any \(i \) and \(s \geq 0 \) prove the inequalities
\[i \leq \sum_{j=1}^i (p_j/p_i)^s \leq \sum_j (p_j/p_i)^s \]

(d) For any \(\rho \geq 0 \), show that
\[E[|G^*(X)|^\rho] \leq \left(\sum_i p_i^{1-s\rho} \right) \left(\sum_j p_j^s \right)^\rho. \]
for any \(s \geq 0 \). [Hint: write \(E[|G^*(X)|^\rho] = \sum_i p_i i^\rho \), and use (c) to upper bound \(i^\rho \)]

(e) By a choosing \(s \) carefully, show that
\[E[|G^*(X)|^\rho] \leq \left(\sum_i p_i^{1/(1+\rho)} \right)^{1+\rho} = \exp[\rho H_1/(1+\rho)(X)]. \]
(f) Suppose U_1, \ldots, U_n are i.i.d., each with distribution p, and $X = (U_1, \ldots, U_n)$. (I.e., we are trying to guess a password that is made of n independently chosen letters.) Show that

$$\frac{1}{n} \log E[G^\rho(U_1, \ldots, U_n)^\rho] \leq H_{1/(1+\rho)}(U_1)$$

[Hint: first observe that $H_\alpha(X) = nH_\alpha(U_1)$. In other words, the ρ-th moment of the number of guesses grows exponentially in n with a rate upper bounded by in terms of the Rényi entropy of the letters.

It is possible a lower bound to $E[G^\rho(U_1, \ldots, U_n)^\rho]$ that establishes that the exponential upper bound we found here is asymptotically tight.

Problem 8: Gaussian variance estimation

Consider estimating the mean μ and variance σ^2 from n independent samples (X_1, \ldots, X_n) of a Gaussian with this mean and variance.

(a) Show that $\bar{X} = \frac{1}{n}\sum_{i=1}^{n} X_i$ is an unbiased estimator of μ.

(b) Show that

$$S_n^2 = \frac{1}{n}\sum_{i=1}^{n} (X_i - \bar{X})^2$$

is a biased estimator of σ^2 whereas

$$S_{n-1}^2 = \frac{1}{n-1}\sum_{i=1}^{n} (X_i - \bar{X})^2$$

is an unbiased estimator of σ^2.

(c) Show that S_n^2 has a lower mean squared error than S_{n-1}^2. Thus it is possible that a biased estimator may be better than an unbiased one.