Experimental Design for Efficient Identification of Gene Regulatory Networks using Sparse Bayesian Models

Florian Steinke, Matthias Seeger, Koji Tsuda

Max Planck Institute for Biological Cybernetics
Tübingen, Germany

26 July 2007
Why Experimental Design?

- **Large-scale** genome-wide experiments: Affordable today in fully automatized labs
- Solve problems by complete enumeration or random shooting?
 - Guaranteed to run out of steam on hard problems
 - Cutting-edge experiments always hard/expensive
 - Even for large labs: (#Results)/$ counts!

- Sequential Optimal Design
 Plan next experiment based on all previous outcomes
 ⇒ Every *smart biologist* does that anyway!

- Can optimal design be *semi-automatized* on a dumb machine?
 What general framework allows us to do that?
Why Experimental Design?

- **Large-scale** genome-wide experiments: Affordable today in fully automatized labs
- Solve problems by **complete enumeration or random shooting**?
 - Guaranteed to run out of steam on hard problems
 - Cutting-edge experiments always hard/expensive
 - Even for large labs: \((\#\text{Results})/\$\) counts!

- **Sequential Optimal Design**
 Plan next experiment based on all previous outcomes
 \(\Rightarrow\) Every **smart biologist** does that anyway!
- Can optimal design be **semi-automatized** on a dumb machine?
 What general framework allows us to do that?
Large-scale genome-wide experiments: Affordable today in fully automatized labs

Solve problems by complete enumeration or random shooting?
- Guaranteed to run out of steam on hard problems
- Cutting-edge experiments always hard/expensive
- Even for large labs: (#Results)/$ counts!

Sequential Optimal Design
Plan next experiment based on all previous outcomes
⇒ Every **smart biologist** does that anyway!

Can optimal design be **semi-automatized** on a dumb machine?
What general framework allows us to do that?
The Need for Experimental Design

Why Experimental Design?

- **Large-scale** genome-wide experiments:
 Affordable today in fully automatized labs

- Solve problems by **complete enumeration or random shooting**?
 - Guaranteed to run out of steam on hard problems
 - Cutting-edge experiments always hard/expensive
 - Even for large labs: (#Results)/$ counts!

- **Sequential Optimal Design**
 Plan next experiment based on all previous outcomes
 ⇒ Every **smart biologist** does that anyway!

- Can optimal design be **semi-automatized** on a dumb machine?
 What general framework allows us to do that?
Bayesian Framework

- Model design
 - Observed, hidden variables. Dependency model
 - Posterior uncertainty
 - Reduced on X, but not on Y
 - Information Gain Scores
 - $S(A; \text{Data}) < S(B; \text{Data})$
 - \Rightarrow OK$>$ Should do B
 - Run overnight, sift through raw data, (hopefully) help intuition along

Smart Biologist

- Which variables could explain my data? How could dependencies look like?
 - X look well-determined.
 - Did not learn much about Y
 - I think: Exp. A (B) would tell me more about X (Y) now
 - \Rightarrow Of course I do B!
 - 1000s of X, Y. Combinatorial number of possible interactions
 - \Rightarrow Human intuition

Florian Steinke, Matthias Seeger, Koji Tsuda
Gene Network Identification
PMCB Vienna, 26/7/07
The Need for Experimental Design

Bayesian Optimal Design

Smart Biologist

- Which variables could explain my data? How could dependencies look like?
- X look well-determined. Did not learn much about Y
- I think: Exp. A (B) would tell me more about X (Y) now
 \Rightarrow Of course I do B!
- 1000s of X, Y. Combinatorial number of possible interactions \Rightarrow Human intuition

Bayesian Framework

- Model design
 Observed, hidden variables. Dependency model
- Posterior uncertainty
 Reduced on X, but not on Y
- Information Gain Scores
 $S(A; \text{Data}) < S(B; \text{Data})$
 \Rightarrow OK $>$ Should do B
- Run overnight, sift through raw data, (hopefully) help intuition along

Florian Steinke, Matthias Seeger, Koji Tsuda
Gene Network Identification
PMCB Vienna, 26/7/07
The Need for Experimental Design

Bayesian Optimal Design

Smart Biologist

- Which variables could explain my data? How could dependencies look like?

- X look well-determined. Did not learn much about Y

- I think: Exp. A (B) would tell me more about X (Y) now
 ⇒ Of course I do B!

- 1000s of X, Y. Combinatorial number of possible interactions ⇒ Human intuition

Bayesian Framework

- Model design
 Observed, hidden variables. Dependency model

- Posterior uncertainty
 Reduced on X, but not on Y

- Information Gain Scores
 \[S(A; \text{Data}) < S(B; \text{Data}) \]
 ⇒ OK> Should do B

- Run overnight, sift through raw data, (hopefully) help intuition along
The Need for Experimental Design

Bayesian Optimal Design

Smart Biologist

- Which variables could explain my data? How could dependencies look like?
- X look well-determined. Did not learn much about Y
- I think: Exp. A (B) would tell me more about X (Y) now ⇒ Of course I do B!
- 1000s of X, Y. Combinatorial number of possible interactions ⇒ Human intuition

Bayesian Framework

- Model design
 Observed, hidden variables. Dependency model
- Posterior uncertainty
 Reduced on X, but not on Y
- Information Gain Scores
 $S(A; \text{Data}) < S(B; \text{Data})$ ⇒ OK> Should do B
- Run overnight, sift through raw data, (hopefully) help intuition along
Genes can regulate other genes
Protein from gene A can be transcription factor: up-/down-regulates transcription of gene B. Causal link $A \rightarrow B$ in gene regulatory network

Affordable Measurements
m-RNA concentrations (micro-arrays), protein concentrations \leftrightarrow Expression levels $x_A(t), x_B(t)$

System Identification
Interventionist. Disturb system (without breaking it). Learn structure from changes in measurements

Optimal Experimental Design
For given model: Short(est) sequences of experiments leading to identification?
Genes can regulate other genes
Protein from gene A can be transcription factor:
up-/down-regulates transcription of gene B.
Causal link $A \rightarrow B$ in gene regulatory network

Affordable Measurements
m-RNA concentrations (micro-arrays), protein concentrations
↔ Expression levels $x_A(t), x_B(t)$

System Identification
Interventionist. Disturb system (without breaking it).
Learn structure from changes in measurements

Optimal Experimental Design
For given model: Short(est) sequences of experiments leading to identification?
Genes can regulate other genes
Protein from gene A can be transcription factor:
up-/down-regulates transcription of gene B.
Causal link $A \rightarrow B$ in gene regulatory network

Affordable Measurements
m-RNA concentrations (micro-arrays), protein concentrations
\leftrightarrow Expression levels $x_A(t)$, $x_B(t)$

System Identification
Interventionist. Disturb system (without breaking it).
Learn structure from changes in measurements

Optimal Experimental Design
For given model: Short(est) sequences of experiments leading to identification?
Genes can regulate other genes
Protein from gene A can be transcription factor: up-/down-regulates transcription of gene B.
Causal link $A \rightarrow B$ in gene regulatory network

Affordable Measurements
m-RNA concentrations (micro-arrays), protein concentrations ↔ Expression levels $x_A(t)$, $x_B(t)$

System Identification
Interventionist. Disturb system (without breaking it). Learn structure from changes in measurements

Optimal Experimental Design
For given model: Short(est) sequences of experiments leading to identification?
ODE Model

\[
\begin{align*}
 dx(t) &= f(x(t))dt + dW(t) \\
 E[x(t)] &\to x_0 \ (t \to \infty)
\end{align*}
\]

1. Linearize around steady state: \(x(t) \to x(t) - x_0 \).
2. System matrix \(A = (df_i/dx_{0,j})_{ij} \).
3. Disturb system by \(u(t) \equiv u_* \), measure new steady state:
 \[
 dx(t) = Ax(t) - u(t) + dW(t), \quad x_* = \lim_{t \to \infty} E[x(t)]
 \]
4. Motivates linear model for measurements:
 \[
 u_* = Ax_* + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I)
 \]
Linearized ODE Model

ODE Model

\[
dx(t) = f(x(t))dt + dW(t)
\]

\[
E[x(t)] \rightarrow x_0 \; (t \rightarrow \infty)
\]

x(t) Expression levels \(n\) genes

f(·) Non-linear model

x_0 Unperturbed steady state

1. **Linearize around steady state:** \(x(t) \rightarrow x(t) - x_0\).
 - **System matrix** \(A = (df_i/dx_{0,j})_{ij}\)

2. **Disturb system by** \(u(t) \equiv u_\ast\), measure new steady state:
 \[
dx(t) = Ax(t) - u(t) + dW(t), \quad x_\ast = \lim_{t \rightarrow \infty} E[x(t)]
 \]

3. **Motivates linear model for measurements:**
 \[
u_\ast = Ax_\ast + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I)
 \]

Florian Steinke, Matthias Seeger, Koji Tsuda

Gene Network Identification

PMCB Vienna, 26/7/07 6 / 18
System Identification of Genetic Regulation

Linearized ODE Model

ODE Model

\[\frac{dx(t)}{dt} = f(x(t))dt + dW(t) \]
\[\mathbb{E}[x(t)] \rightarrow x_0 \ (t \rightarrow \infty) \]

- \(x(t) \) Expression levels \(n \) genes
- \(f(\cdot) \) Non-linear model
- \(x_0 \) Unperturbed steady state

1. Linearize around steady state: \(x(t) \rightarrow x(t) - x_0 \).
 System matrix \(A = (df_i/dx_{0,j})_{ij} \)

2. Disturb system by \(u(t) \equiv u_* \), measure new steady state:
 \[\frac{dx(t)}{dt} = Ax(t) - u(t) + dW(t), \quad x_* = \lim_{t \rightarrow \infty} \mathbb{E}[x(t)] \]

3. Motivates linear model for measurements:
 \[u_* = Ax_* + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I) \]
System Identification of Genetic Regulation

Linearized ODE Model

ODE Model

\[\frac{dx(t)}{dt} = f(x(t))dt + dW(t) \]

\[E[x(t)] \to x_0 \quad (t \to \infty) \]

\(x(t) \) Expression levels \(n \) genes

\(f(\cdot) \) Non-linear model

\(x_0 \) Unperturbed steady state

1. Linearize around steady state: \(x(t) \to x(t) - x_0 \).

 System matrix \(A = (df_i/dx_{0,j})_{ij} \)

2. Disturb system by \(u(t) \equiv u_\ast \), measure new steady state:

\[\frac{dx(t)}{dt} = Ax(t) - u(t) + dW(t), \quad x_\ast = \lim_{t\to\infty} E[x(t)] \]

3. Motivates linear model for measurements:

\[u_\ast = Ax_\ast + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2I) \]
Bayesian Linear Model

- **Likelihood** \(P(D|A) = \prod_k N(u_k|Ax_k, \sigma^2 I) \). Prior \(P(A) \)

 Bayesian Posterior: \(P(A|D) \propto P(D|A)P(A) \)

 Why not just (penalized) maximum likelihood estimation:

 \[\hat{A} = \text{argmax} \ P(D|A)P(A) \]?

- Estimation is not sufficient here
 - Optimal design fundamentally needs uncertainty quantification
 \(\Rightarrow \) Posterior \(P(A|D) \) is just that
 - Decisions are needed after many fewer than \(n \) experiments.
 \(\Rightarrow \) “Objective” classical estimation theory breaks down
 - Besides: Is \(A \) really completely unknown . . . ?
Bayesian Linear Model

- Likelihood: \(P(D|A) = \prod_k N(u_k|Ax_k, \sigma^2 I) \). Prior \(P(A) \)

 Bayesian Posterior: \(P(A|D) \propto P(D|A)P(A) \)

Why not just (penalized) maximum likelihood estimation:

\[\hat{A} = \text{argmax } P(D|A)P(A) \]?

- Estimation is not sufficient here
 Optimal design fundamentally needs uncertainty quantification
 \(\Rightarrow \) Posterior \(P(A|D) \) is just that

- Decisions are needed after many fewer than \(n \) experiments.
 \(\Rightarrow \) “Objective” classical estimation theory breaks down

- Besides: Is \(A \) really completely unknown . . . ?
Likelihood $P(D|A) = \prod_k N(u_k|Ax_k, \sigma^2 I)$. Prior $P(A)$

Bayesian Posterior: $P(A|D) \propto P(D|A)P(A)$

Why not just (penalized) maximum likelihood estimation:

$\hat{A} = \text{argmax } P(D|A)P(A)$?

Estimation is not sufficient here
Optimal design fundamentally needs uncertainty quantification
⇒ Posterior $P(A|D)$ is just that

Decisions are needed after many fewer than n experiments.
⇒ “Objective” classical estimation theory breaks down

Besides: Is A really completely unknown . . . ?
Bayesian Linear Model

- Likelihood \(P(D|A) = \prod_k N(u_k|Ax_k, \sigma^2 I) \). Prior \(P(A) \)

Bayesian Posterior: \(P(A|D) \propto P(D|A)P(A) \)

Why not just (penalized) maximum likelihood estimation:
\[
\hat{A} = \text{argmax } P(D|A)P(A)
\]

- Estimation is not sufficient here
 Optimal design fundamentally needs uncertainty quantification
 \(\Rightarrow \) Posterior \(P(A|D) \) is just that

- Decisions are needed after many fewer than \(n \) experiments.
 \(\Rightarrow \) “Objective” classical estimation theory breaks down

- Besides: Is \(A \) really completely unknown . . . ?
A Sparsity Prior Distribution

- All biological regulatory networks are sparsely connected
 ⇒ A should have many very small entries
- Encoding sparsity of A is a must!
 ⇒ Sparsity-enforcing prior distribution $P(A)$

Laplace Prior

$$P(A) = \prod_{ij} P(a_{ij}), \quad P(a_{ij}) = \frac{\tau}{2} e^{-\tau |a_{ij}|}$$
All biological regulatory networks are sparsely connected
⇒ A should have many very small entries

Encoding sparsity of A is a must!
⇒ Sparsity-enforcing prior distribution $P(A)$

Laplace Prior

$$P(A) = \prod_{ij} P(a_{ij}), \quad P(a_{ij}) = \frac{\tau}{2} e^{-\tau |a_{ij}|}$$
A Sparsity Prior Distribution

Laplace Prior

\[P(A) = \prod_{ij} P(a_{ij}), \quad P(a_{ij}) = \frac{\tau}{2} e^{-\tau |a_{ij}|} \]
Approximate Inference: Rough Idea

- Bayesian posterior for one row \mathbf{a} of \mathbf{A}

$$P(\mathbf{a}|\mathbf{D}) \propto P(\mathbf{D}|\mathbf{a}) \prod_i P(\mathbf{a}_i)$$

Hard “just” because $P(\mathbf{a}_i)$ are not Gaussian

- Moment matching idea: $P(\mathbf{D}|\mathbf{a})P(\mathbf{a}_i)$ not Gaussian either. Gaussian with same moments have form $P(\mathbf{D}|\mathbf{a})\tilde{P}(\mathbf{a}_i|\mathbf{b}_i, \pi_i)$.

$$P(\mathbf{a}|\mathbf{D}) \approx Q(\mathbf{a}) \propto P(\mathbf{D}|\mathbf{a}) \prod_i \tilde{P}(\mathbf{a}_i|\mathbf{b}_i, \pi_i)$$

- Expectation Propagation: iterates moment matching over i:
 Update variational parameters \mathbf{b}_i, π_i s.t.:

 $$Q_{old}(\mathbf{a})P(\mathbf{a}_i)/\tilde{P}(\mathbf{a}_i) \leftrightarrow Q_{new}(\mathbf{a})$$ [same moments]
Approximate Inference: Rough Idea

- Bayesian posterior for one row a of A

\[P(a|D) \propto P(D|a) \prod_i P(a_i) \]

Hard “just” because $P(a_i)$ are not Gaussian

- Moment matching idea: $P(D|a)P(a_i)$ not Gaussian either. Gaussian with \textbf{same moments} have form $P(D|a)\tilde{P}(a_i|b_i, \pi_i)$.

\[P(a|D) \approx Q(a) \propto P(D|a) \prod_i \tilde{P}(a_i|b_i, \pi_i) \]

- Expectation Propagation: iterates moment matching over i:
 Update variational parameters b_i, π_i s.t.:

\[Q_{old}(a)P(a_i)/\tilde{P}(a_i) \leftrightarrow Q_{new}(a) \text{ [same moments]} \]
Bayesian posterior for one row a of A

$$P(a|D) \propto P(D|a) \prod_i P(a_i)$$

Hard “just” because $P(a_i)$ are not Gaussian

Moment matching idea: $P(D|a)P(a_i)$ not Gaussian either. Gaussian with same moments have form $P(D|a)\tilde{P}(a_i|b_i, \pi_i)$.

$$P(a|D) \approx Q(a) \propto P(D|a) \prod_i \tilde{P}(a_i|b_i, \pi_i)$$

Expectation Propagation: iterates moment matching over i:
Update variational parameters b_i, π_i s.t.:
$$Q_{old}(a)P(a_i)/\tilde{P}(a_i) \longleftrightarrow Q_{new}(a) \text{ [same moments]}$$
Sparse Bayesian Linear Model

Bayesian Experimental Design

Information Gain Score

\[S(u_*, x_* | D) = D[Q'(A | D \cup \{(u_*, x_*)\}) \| Q(A | D)] \]

\(D[Q' \| Q]\): Information gained in \(Q \rightarrow Q'\).
Efficient exact computation for Gaussians \(Q, Q'\)

- But outcome \(x_*\) unknown before experiment \(u_*\) done!?
 ⇒ Use expected score under current knowledge \(Q(x_* | D, u_*).\)
 Exact sampling: \(A \sim Q(\cdot | D), x_* = A^{-1} u_*\)

- Score many candidates \(u_*\) very efficiently:
 Pick maximizer of \(E_{Q(x_* | D, u_*)}[S(u_*, x_* | D)]\)
Information Gain Score

\[S(u_*, x_* | D) = D[Q'(A | D \cup \{(u_*, x_*)\}) \parallel Q(A | D)] \]

\(D[Q' \parallel Q] \): Information gained in \(Q \rightarrow Q' \).
Efficient exact computation for Gaussians \(Q, Q' \)

- But outcome \(x_* \) unknown before experiment \(u_* \) done!?
 ⇒ Use expected score under current knowledge \(Q(x_* | D, u_*) \).
 Exact sampling: \(A \sim Q(\cdot | D), x_* = A^{-1} u_* \)

- Score many candidates \(u_* \) very efficiently:
 Pick maximizer of \(\mathbb{E}_{Q(x_* | D, u_*)}[S(u_*, x_* | D)] \)
Information Gain Score

$$S(u_*, x_* | D) = D[Q'(A | D \cup \{(u_*, x_*)\}) \| Q(A | D)]$$

$D[Q' \| Q]$: Information gained in $Q \rightarrow Q'$. Efficient exact computation for Gaussians Q, Q'

- But outcome x_* unknown before experiment u_* done!? ⇒ Use expected score under current knowledge $Q(x_* | D, u_*)$.
 - Exact sampling: $A \sim Q(\cdot | D)$, $x_* = A^{-1} u_*$

- Score many candidates u_* very efficiently:
 - Pick maximizer of $E_{Q(x_* | D, u_*)}[S(u_*, x_* | D)]$
Robust, efficient code will be released:
Predictable running time. Easy to use for non-experts

- Free parameters σ^2, τ:
 Bayesian automatic selection, given related task data
- Applies to time series data just as well (if linear model does)
- Encompasses generalized linear models:
 - Non-Gaussian noise (outliers)
 - Discrete or point process observations
Our Approach As Black Box

- Robust, efficient code will be released:
 Predictable running time. Easy to use for non-experts
- Free parameters σ^2, τ:
 Bayesian automatic selection, given related task data
- Applies to time series data just as well (if linear model does)
- Encompasses generalized linear models:
 - Non-Gaussian noise (outliers)
 - Discrete or point process observations
Our Approach As Black Box

- Robust, efficient code will be released:
 Predictable running time. Easy to use for non-experts
- Free parameters σ^2, τ:
 Bayesian automatic selection, given related task data
- Applies to time series data just as well (if linear model does)
- Encompasses generalized linear models:
 - Non-Gaussian noise (outliers)
 - Discrete or point process observations
Robust, efficient code will be released:
Predictable running time. Easy to use for non-experts
Free parameters σ^2, τ:
Bayesian automatic selection, given related task data
Applies to time series data just as well (if linear model does)
Encompasses generalized linear models:
- Non-Gaussian noise (outliers)
- Discrete or point process observations
Common practice: validate on data from realistic simulation.

- Sample small-world network, \(n = 50 \) genes

- Model with Hill-type kinetics, parameters randomly drawn (similar to Kholodenko *et al.*, 02)

- Pool of 200 \(u_\ast \) (unit norm; 3 non-zeros, sparsity for biological relevance) randomly drawn

- Noise variance \(\sigma^2 \) estimated from simpler random networks. Prior precision \(\tau \) set by heuristic
Common practice: validate on data from realistic simulation.

- Sample small-world network, \(n = 50 \) genes

- Model with Hill-type kinetics, parameters randomly drawn (similar to Kholodenko et al., 02)

\[
f_i(x) = -V_{di} \frac{x_i}{d_i + x_i} + V_{si} \prod_{j \in A_i} \frac{1 + A_{ij} \left(\frac{x_j}{\kappa_{ij}} \right)^{n_{ij}}}{1 + \left(\frac{x_j}{\kappa_{ij}} \right)^{n_{ij}}} \prod_{j \in I_i} \frac{1}{1 + \left(\frac{x_j}{\kappa_{ij}} \right)^{n_{ij}}}
\]

- Pool of 200 \(u_* \) (unit norm; 3 non-zeros, sparsity for biological relevance) randomly drawn

- Noise variance \(\sigma^2 \) estimated from simpler random networks. Prior precision \(\tau \) set by heuristic
Experiments

Experimental Setup

Common practice: validate on data from realistic simulation.

- **Sample small-world network,**
 \(n = 50 \) genes

- **Model with Hill-type kinetics,** parameters randomly drawn
 (similar to Kholodenko et.al., 02)

- **Pool of 200 \(u_* \) (unit norm; 3 non-zeros, sparsity for biological relevance) randomly drawn**

- **Noise variance \(\sigma^2 \) estimated from simpler random networks.**
 Prior precision \(\tau \) set by heuristic

\[
 f_i(x) = -V_{di} \frac{x_i}{d_i + x_i} \\
 + V_{si} \prod_{j \in A_i} \frac{1 + A_{ij} \left(\frac{x_j}{\kappa_{ij}} \right)^{n_{ij}}}{1 + \left(\frac{x_j}{\kappa_{ij}} \right)^{n_{ij}}} \prod_{j \in I_i} \frac{1}{1 + \left(\frac{x_j}{\kappa_{ij}} \right)^{n_{ij}}}
\]
Network from joint posterior $Q(A)$?
Rank edges $i \leftarrow j$ by $Q(\{|a_{ij}| > 0.1\})$

- ROC curve: false positive rate \rightarrow true positive rate.
 iAUC: area under ROC curve, up to # FPs = # edges.
 Random ranking has iAUC = 0.02
- About 25% edges have value ≈ 0 in true A (at steady state), not detectable by linearized model. Excluded from iAUC computation
Network from joint posterior $Q(A)$?
Rank edges $i \leftarrow j$ by $Q(\{|a_{ij}| > 0.1\})$

ROC curve: false positive rate \rightarrow true positive rate.
iAUC: area under ROC curve, up to # FPs $=$ # edges.
Random ranking has iAUC $= 0.02$

About 25% edges have value ≈ 0 in true A (at steady state), not detectable by linearized model. Excluded from iAUC computation
Network from joint posterior $Q(A)$?
Rank edges $i \leftarrow j$ by $Q(\{|a_{ij}| > 0.1\})$

ROC curve: false positive rate \rightarrow true positive rate.
iAUC: area under ROC curve, up to # FPs $=$ # edges.
Random ranking has iAUC $= 0.02$

About 25% edges have value ≈ 0 in true A (at steady state), not detectable by linearized model. Excluded from iAUC computation
Tegnér et al. (PNAS 03): most cited work on experimental design for network identification.

- We do not use quantizations: our method works better and is 2 orders of magnitude faster.
- They require node in-degree ≤ 3 (unrealistic in scale-free networks), we do not [comparison done on such graphs].
Comparison Tegnér \textit{et al.}

- Tegnér \textit{et al.} (PNAS 03): most cited work on experimental design for network identification.
- We do not use quantizations: our method works better and is 2 orders of magnitude faster.
- They require node in-degree ≤ 3 (unrealistic in scale-free networks), we do not [comparison done on such graphs]
Tegnér et al. (PNAS 03): most cited work on experimental design for network identification.

We do not use quantizations: our method works better and is 2 orders of magnitude faster.

They require node in-degree \(\leq 3 \) (unrealistic in scale-free networks), we do not [comparison done on such graphs]
Related Work

- Much work on disturbed linearized ODE models. Estimation, no inference, no experimental design (except Tegnér et al.)
- Sparse Bayesian Learning (Tipping, 01; Rogers, Girolami, 05)
 No experimental design. Uses non-log-concave Student-t prior. EP more general than SBL
- Markov Chain Monte Carlo (Park, Casella, 05)
 Much slower than our method (too slow for large-scale experimental design). Hard to assess convergence even for experts
Related Work

- Much work on disturbed linearized ODE models. Estimation, no inference, no experimental design (except Tegnér et al.)

- Sparse Bayesian Learning (Tipping, 01; Rogers, Girolami, 05)
 No experimental design. Uses non-log-concave Student-\(t\) prior. EP more general than SBL

- Markov Chain Monte Carlo (Park, Casella, 05)
 Much slower than our method (too slow for large-scale experimental design). Hard to assess convergence even for experts
Related Work

- Much work on disturbed linearized ODE models. Estimation, no inference, no experimental design (except Tegnér et al.)
- Sparse Bayesian Learning (Tipping, 01; Rogers, Girolami, 05) No experimental design. Uses non-log-concave Student-t prior. EP more general than SBL
- Markov Chain Monte Carlo (Park, Casella, 05) Much slower than our method (too slow for large-scale experimental design). Hard to assess convergence even for experts
Conclusions

- **Fast accurate** approximate inference, experimental design in disturbed linearized ODE setup
- Network sparsity is key prior assumption. Experimental design can lead to large savings
- Can be used with time-course measurements just as well
- Robust, easy-to-use method. **Code** with Matlab interface will be released
- Linearized ODE approach is limited:
 - Small, controlled u_* to stay in linearity region (experimental techniques?), but large u_* for better SNR
 - No saturation, Michaelis-Menten, etc
- Bayesian inference and experimental design for (simple) non-linear ODEs of biochemical kinetics?
Conclusions

- Fast accurate approximate inference, experimental design in disturbed linearized ODE setup
- Network sparsity is **key prior** assumption. Experimental design can lead to **large savings**
- Can be used with time-course measurements just as well
- Robust, easy-to-use method. **Code** with Matlab interface will be released
- Linearized ODE approach is limited:
 - Small, controlled u_\ast to stay in linearity region (experimental techniques?), but large u_\ast for better SNR
 - No saturation, Michaelis-Menten, etc
- Bayesian inference and experimental design for (simple) non-linear ODEs of biochemical kinetics?
Conclusions

- **Fast accurate** approximate inference, experimental design in disturbed linearized ODE setup
- Network sparsity is **key prior** assumption. Experimental design can lead to **large savings**
- Can be used with **time-course** measurements just as well
- Robust, easy-to-use method. **Code** with Matlab interface will be released
- Linearized ODE approach is limited:
 - Small, controlled u^* to stay in linearity region (experimental techniques?), but large u^* for better SNR
 - No saturation, Michaelis-Menten, etc
- Bayesian inference and experimental design for (simple) non-linear ODEs of biochemical kinetics?
Conclusions

- **Fast accurate** approximate inference, experimental design in disturbed linearized ODE setup
- Network sparsity is **key prior** assumption. Experimental design can lead to **large savings**
- Can be used with **time-course** measurements just as well
- Robust, easy-to-use method. **Code** with Matlab interface will be released

Linearized ODE approach is limited:
- Small, controlled u_* to stay in linearity region (experimental techniques?), but large u_* for better SNR
- No saturation, Michaelis-Menten, etc

Bayesian inference and experimental design for (simple) non-linear ODEs of biochemical kinetics?
Conclusions

- **Fast accurate** approximate inference, experimental design in disturbed linearized ODE setup
- Network sparsity is **key prior** assumption. Experimental design can lead to **large savings**
- Can be used with **time-course** measurements just as well
- Robust, easy-to-use method. **Code** with Matlab interface will be released
- Linearized ODE approach is limited:
 - Small, controlled u_\ast to stay in linearity region (experimental techniques?), but large u_\ast for better SNR
 - No saturation, Michaelis-Menten, *etc*

- Bayesian inference and experimental design for (simple) non-linear ODEs of biochemical kinetics?
Conclusions

- **Fast accurate** approximate inference, experimental design in disturbed linearized ODE setup
- Network sparsity is **key prior** assumption. Experimental design can lead to **large savings**
- Can be used with **time-course** measurements just as well
- Robust, easy-to-use method. **Code** with Matlab interface will be released
- Linearized ODE approach is limited:
 - Small, controlled u_* to stay in linearity region (experimental techniques?), but large u_* for better SNR
 - No saturation, Michaelis-Menten, *etc*
- Bayesian inference and experimental design for (simple) non-linear ODEs of biochemical kinetics?
Other applications of sparse (generalized) linear models, in systems biology and beyond (natural image statistics, neural spike coding, adaptive control, etc)

Applications to dynamical or nonparametric models?

Submitted for journal publication

Details:
M. Seeger, F. Steinke, K. Tsuda
Bayesian Inference and Optimal Design in the Sparse Linear Model, AI and Statistics 2007
www.kyb.tuebingen.mpg.de/bs/people/seeger

Useful for your work? Do not hesitate to get in touch