Matlab Solutions 1

a) Recall that $\int_{\mathbb{R}} e^{-y^2} \, dy = \Gamma(1/2) = \sqrt{\pi}$ (to see it, square the LHS, switch to polar coordinates (r, θ) and use Fubini, to integrate re^{-r^2}). Using substitution $y^2 = \frac{(x-\mu)^2}{2\sigma^2}$, i.e. $y = \frac{x-\mu}{\sqrt{2}\sigma}$, we have

$$\sqrt{\pi} = \int_{\mathbb{R}} e^{-y^2} \, dy = \int_{\mathbb{R}} \frac{1}{\sqrt{2\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \, dx.$$

Hence

$$\int_{\mathbb{R}} p_X(x) \, dx = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \, dx = 1.$$

Now, let's compute $E(X)$:

$$E(X) = \int_{\mathbb{R}} x p_X(x) \, dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} x \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \, dx$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} (x-\mu) \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \, dx + \mu$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} u \exp\left(-\frac{u^2}{2\sigma^2}\right) \, du + \mu$$

where the last equality holds because the function $u \mapsto f(u) := \exp\left(-\frac{u^2}{2\sigma^2}\right)$, which is an odd function (i.e. $f(-u) = -f(u)$), is integrated on a symmetric domain (\mathbb{R}), centered on 0.

We can use this computation to compute Var(X):

$$\text{Var}(X) = E(X^2) - E(X)^2 = \int_{\mathbb{R}} x^2 p_X(x) \, dx - \mu^2$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} x^2 \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \, dx - \mu^2$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left(\sqrt{2\sigma^2} y + \mu\right)^2 e^{-y^2} \, dy - \mu^2$$

$$= \frac{2\sigma^2}{\sqrt{\pi}} \int_{\mathbb{R}} y^2 e^{-y^2} \, dy$$

$$= \frac{2\sigma^2}{\sqrt{\pi}} \int_{\mathbb{R}} y \, dy \left(-\frac{1}{2} e^{-y^2}\right) \, dy = \frac{2\sigma^2}{\sqrt{\pi}} \int_{\mathbb{R}} \frac{1}{2} e^{-y^2} \, dy$$

$$= \sigma^2,$$

where the next to last equality holds because of integration by parts.

Now,

$$E((X - \mu)^3) = \int_{\mathbb{R}} (x - \mu)^3 p_X(x) \, dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} (x - \mu)^3 \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \, dx$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} u^3 \exp\left(-\frac{u^2}{2\sigma^2}\right) \, du$$

$$= 0,$$
because the integrand is odd on \mathbb{R}, the domain of integration, which is symmetric with respect to 0.

Finally,

\[
\mathbb{E}((X - \mu)^4) = \int_{\mathbb{R}} (x - \mu)^4 p_X(x) \, dx \\
= \frac{4\sigma^4}{\sqrt{\pi}} \int_{\mathbb{R}} y^4 e^{-y^2} \, dy = \frac{8\sigma^4}{\sqrt{\pi}} \int_0^{+\infty} y^4 e^{-y^2} \, dy \\
= \frac{4\sigma^4}{\sqrt{\pi}} \int_0^{+\infty} t^{3/2} e^{-t} \, dt \\
= \frac{4\sigma^4}{\sqrt{\pi}} \cdot \Gamma(5/2) = \frac{4\sigma^4}{\sqrt{\pi}} \cdot \Gamma(1/2) \cdot \frac{3}{4} \\
= 3\sigma^4.
\]

b1) See Matlab code.

b2) The more the skewness is positive, the more the sample is right-skewed. The more it’s negative, the more the sample is left-skewed. It is important to understand that the skewness of the sample might not be a good approximation of the real skewness coefficient of the original distribution (to answer such a question, one would need to study statistical theory).

There are various interpretations to kurtosis. One of them (the classical, which holds only for unimodal typically non-skewed distributions) is that if the kurtosis is larger than 3, one could say it is peaked around its mean, with fat tails; and if it’s smaller than 3, its peak is lower and wider, with thinner tails.

b3) It’s obvious that the kurtosis is strictly positive (the variance is strictly positive). In fact, it’s easy to see that it is not smaller than 1 (use Cauchy-Schwarz or Bernoulli inequality). This is a general result: the kurtosis is always bounded below by $S^2 + 1$ (recall that S is the skewness), hence in particular by 1.

c) If X_1, X_2 are two i.i.d. $\mathcal{N}(0, 1)$ random variables and $(X_1, X_2) = (R \cos \Theta, R \sin \Theta)$, then

\[
\frac{1}{2\pi} e^{-x^2/2} e^{-y^2/2} \, dx \, dy = \frac{1}{2\pi} re^{-r^2/2} \, dr \, d\theta = \left(\frac{1}{2\pi} \, d\theta \right) \left(re^{-r^2/2} \, dr \right) = \left(\frac{1}{2\pi} \, d\theta \right) \left(\frac{1}{2} e^{-t/2} \, dt \right),
\]

where the last equality holds thanks to the change of variable $t = r^2$. We notice that R and Θ are independent (their joint density is the product of their respective marginal densities), and that R has an exponential distribution (parameter 1/2) meanwhile Θ is uniformly distributed on $[0, 2\pi]$.

For the numerical computation, see Matlab code.

d1) Notice that the result is actually true for any two independent random variables, as in all generality we have

\[
\text{Cov}(X_1, X_2) = \mathbb{E}(X_1 X_2) - \mu_1 \mu_2 = \mathbb{E}(X_1)\mathbb{E}(X_2) - \mu_1 \mu_2 = 0.
\]

d2) See Matlab code.
d3) The CDF (cumulative distribution function) of Y_2 is

$$F_{Y_2}(x) = \mathbb{P}\{Y_2 \leq x\} = \mathbb{P}\{ZY_1 \leq x\}$$

$$= \mathbb{P}\{Y_1 \leq x | Z = +1\} \mathbb{P}\{Z= +1\} + \mathbb{P}\{-Y_1 \leq x | Z = -1\} \mathbb{P}\{Z= -1\}$$

$$= \frac{1}{2} \mathbb{P}\{Y_1 \leq x\} + \frac{1}{2} \mathbb{P}\{-Y_1 \leq x\} = \frac{1}{2} \mathbb{P}\{Y_1 \leq x\} + \frac{1}{2} \mathbb{P}\{Y_1 \geq -x\}$$

$$= \frac{1}{2} \left(\mathbb{P}\{Y_1 \leq x\} + \int_{-x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy \right)$$

$$= \frac{1}{2} \left(\mathbb{P}\{Y_1 \leq x\} - \int_{x}^{-\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du \right)$$

$$= \frac{1}{2} \left(\mathbb{P}\{Y_1 \leq x\} + \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du \right)$$

$$= \frac{1}{2} \mathbb{P}\{Y_1 \leq x\} + \frac{1}{2} \mathbb{P}\{Y_1 \leq x\}$$

$$= \mathbb{P}\{Y_1 \leq x\} = F_{Y_1}(x),$$

where we used the change of variable $u = -y$. Hence $Y_2 \sim \mathcal{N}(0,1)$.

Then, we use independence of Z with respect to Y_1 to compute

$$\text{Cov}(Y_1, Y_2) = \text{Cov}(Y_1, ZY_1) = \mathbb{E}(Y_1 ZY_1) - \mathbb{E}(Y_1)\mathbb{E}(ZY_1) = \mathbb{E}(Z) \left(\mathbb{E}(Y_1^2) - \mathbb{E}(Y_1)^2 \right) = 0,$$

because $\mathbb{E}(Z)$ is zero.

d4) See Matlab code.

d5) When Y_1 takes some value $y \in \mathbb{R}$, the value of Y_2 is precisely y up to its sign. Put differently, we have

$$|Y_2| = |Y_1|,$$

so Y_1 and Y_2 cannot be independent.

e1) We have

$$\text{Cov}(X_1, X_2) = \Sigma_{12} = 0 \iff \Sigma \text{ is a diagonal matrix}$$

$$\iff \forall x_1, x_2 \in \mathbb{R}, \ p_{X_1,X_2}(x_1, x_2) = p_{X_1}(x_1)p_{X_2}(x_2)$$

$$\iff X_1 \text{ and } X_2 \text{ are independent}.$$

e2) No (if they were, they would be independent but part d5) proves they can’t be).