Exercise 1. Let \((Ω, F, P)\) be a probability space. Using only the axioms given in the definition of a probability measure, show the following properties:

a) \(P(A) \leq P(B)\), if \(A \subset B\), \(A, B \in F\).

b) \(P(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} P(A_n)\), if \(A_n \in F\), \(\forall n \geq 1\).

c) \(P(\bigcup_{n=1}^{\infty} A_n) = 0\), if \(A_n \in F\) and \(P(A_n) = 0\), \(\forall n \geq 1\).

d) \(P(B \setminus A) = P(B) - P(A)\), if \(A \subset B\), \(A, B \in F\).

e) \(P(A^c) = 1 - P(A)\), if \(A \in F\).

f) \(P(A \cup B) = P(A) + P(B) - P(A \cap B)\), if \(A, B \in F\).

as well as the following two properties, also known as “the continuity axioms”:

g) \(P(\bigcup_{n \geq 1} A_n) = \lim_{n \to \infty} P(A_n)\), if \(A_n \in F\) and \(A_n \subset A_{n+1}\), \(\forall n \geq 1\).

h) \(P(\bigcap_{n \geq 1} A_n) = \lim_{n \to \infty} P(A_n)\), if \(A_n \in F\) and \(A_{n+1} \subset A_n\), \(\forall n \geq 1\).

Exercise 2. One considers the following simplified roulette game:

\[
\begin{array}{|c|c|}
\hline
1 & 2 \\
\hline
3 & 4 \\
\hline
\end{array}
\]

a) Let us assume equal probabilities for all numbers.

Is the family of events “red”, “odd” and “1 or 2” independent?

Are these events 2-by-2 independent?

b) Consider the same question in the case where the roulette is biased as follows:

\(P(\{1\}) = P(\{2\}) = 0.3\), \(P(\{3\}) = P(\{4\}) = 0.2\).

Exercise 3. Let \(X_1, X_2\) be independent and identically distributed (i.i.d.) random variables such that \(P(\{X_i = +1\}) = P(\{X_i = -1\}) = 1/2\) for \(i = 1, 2\). Let also \(Y = X_1 + X_2\) and \(Z = X_1 - X_2\).

a) Are \(Y\) and \(Z\) independent?

b) Same question with \(X_1, X_2\) i.i.d. \(\sim N(0, 1)\) random variables.
Exercise 4. Let $\Omega = \mathbb{R}^2$ and let us define on Ω: $\mathcal{F} = \sigma(\{B_1 \times B_2, B_1, B_2 \in \mathcal{B}(\mathbb{R})\})$. Note that \mathcal{F} is nothing but $\mathcal{B}(\mathbb{R}^2)$.

Let us also define the random variables $X_1(\omega) = \omega_1$ and $X_2(\omega) = \omega_2$ for $\omega = (\omega_1, \omega_2) \in \Omega$ and let finally μ be a probability distribution on \mathbb{R}. Think e.g. of $\mu = \mathcal{N}(0,1)$:

$$\mu(B) = \int_B \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx, \quad B \in \mathcal{B}(\mathbb{R}).$$

We are considering below two different probability measures defined on (Ω, \mathcal{F}); we only specify them on the “rectangles” $B_1 \times B_2$ (a general theorem guarantees that these probability measures can be extended uniquely to the whole σ-field \mathcal{F} generated by the rectangles).

a) $P^{(1)}(B_1 \times B_2) = \mu(B_1) \cdot \mu(B_2)$.

b) $P^{(2)}(B_1 \times B_2) = \mu(B_1 \cap B_2)$

In each case, describe what is the relation between the random variables X_1 and X_2.

2